【題目】已知函數(shù)f(x)=a--lnx,g(x)=ex-ex+1.
(1)若a=2,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)=0恰有一個(gè)解,求a的值;
(3)若g(x)≥f(x)恒成立,求實(shí)數(shù)a的取值范圍.
【答案】(1)1;(2)
【解析】試題分析:(1)由f'(1)=0得切線斜率為1,進(jìn)而得切線方程;
(2)令m(x)=+lnx,求導(dǎo)得函數(shù)單調(diào)性和最值,進(jìn)而得解;
(3)由(Ⅱ)知函數(shù)的最大值為f(1)=a-1,g(x)=ex-ex+1,求導(dǎo)可得函數(shù)g(x)的最小值為g(1)=1,得1≥a-1,進(jìn)而得解.
試題解析:
(1)∵a=2,∴,f'(x)=,∴f'(1)=0,∴切線方程為y=1;
(2)令m(x)=+lnx,∴m'(x)=-+,
∴當(dāng)x在(0,1)時(shí),m'(x)>0,m(x)遞增,
當(dāng)x在(1,+∞)是,m'(x)<0,m(x)遞減,
故m(x)的最大值為m(1)=1,
f(x)=0恰有一個(gè)解,即y=a,與m(x)只有一個(gè)交點(diǎn),∴a=1;
(Ⅲ)由(Ⅱ)知函數(shù)的最大值為f(1)=a-1,g(x)=ex-ex+1.g'(x)=ex-e,
∴當(dāng)x在(0,1)時(shí),g'(x)<0,g(x)遞減,
當(dāng)x在(1,+∞)時(shí),g'(x)>0,g(x)遞增,
∴函數(shù)g(x)的最小值為g(1)=1,g(x)≥f(x)恒成立,∴1≥a-1,∴a≤2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分別是PA,BC的中點(diǎn),且AD=2PD=2.
(1)求證:MN∥平面PCD;
(2)求證:平面PAC⊥平面PBD;
(3)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin2x-2sin2x-a.
①若f(x)=0在x∈R上有解,則a的取值范圍是______;
②若x1,x2是函數(shù)y=f(x)在[0,]內(nèi)的兩個(gè)零點(diǎn),則sin(x1+x2)=______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).
(1)若,求的值;
(2)若記f(θ)=,θ∈[0,].當(dāng)1≤λ≤2時(shí),求f(θ)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(0,-2),橢圓E: 的離心率為,F是橢圓E的右焦點(diǎn),直線PF的斜率為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)直線l被圓O:x2+y2=3截得的弦長為3,且與橢圓E交于A、B兩點(diǎn),求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是正三角形,且與底面垂直,底面是邊長為2的菱形, 是的中點(diǎn),過三點(diǎn)的平面交于, 為的中點(diǎn),求證:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面使用類比推理正確的是( )
A. 由“a(b+c)=ab+ac”類比推出“cos(α+β)=cosα+cosβ”
B. 由“若3a<3b,則a<b”類比推出“若ac<bc,則a<b”
C. 由“平面中垂直于同一直線的兩直線平行”類比推出“空間中垂直于同一平面的兩平面平行”
D. 由“等差數(shù)列{an}中,若a10=0,則a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”類比推出“在等比數(shù)列{bn}中,若b9=1,則有b1b2…bn=b1b2…b17-n(n<17,n∈N*)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|(a>-2)的圖象過點(diǎn)(2,1).
(1)求實(shí)數(shù)a的值;
(2)設(shè),在如圖所示的平面直角坐標(biāo)系中作出函數(shù)y=g(x)的簡圖,并寫出(不需要證明)函數(shù)g(x)的定義域、奇偶性、單調(diào)區(qū)間、值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com