分析 要證明平面PAC垂直于平面PBC,直接證明平面PBC內(nèi)的直線(xiàn)BC,垂直平面PAC內(nèi)的兩條相交直線(xiàn)PA、AC即可.
解答 證明:由AB是圓的直徑,得AC⊥BC.
由PA⊥平面ABC,BC?平面ABC,得PA⊥BC.
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC.
因?yàn)锽C?平面PBC,
所以平面PBC⊥平面PAC.
點(diǎn)評(píng) 本題考查直線(xiàn)與平面平行與垂直的判定,考查空間想象能力,邏輯思維能力,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2,4,6} | B. | {4,6} | C. | {1,3,5} | D. | {1,2,3,4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | π | C. | $\frac{\sqrt{π}}{2}$ | D. | $\frac{\sqrt{3π}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$<a<2且a≠1 | B. | 0<a<$\frac{1}{2}$或1<a<2 | C. | 1<a<2 | D. | a>2或0<a<$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{3\sqrt{5}}{5}$ | D. | -$\frac{3\sqrt{5}}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com