【題目】設函數f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點,則a的取值范圍為( )
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)
【答案】B
【解析】解:f(x)的定義域為(0,+∞),f'(x)= ﹣ax﹣b,由f'(1)=0,得b=1﹣a.
所以f'(x)= .
①若a≥0,由f'(x)=0,得x=1.
當0<x<1時,f'(x)>0,此時f(x)單調遞增;
當x>1時,f'(x)<0,此時f(x)單調遞減.
所以x=1是f(x)的極大值點.
②若a<0,由f'(x)=0,得x=1,或x=﹣ .
因為x=1是f(x)的極大值點,所以﹣ >1,解得﹣1<a<0.
綜合①②:a的取值范圍是a>﹣1.
故選:B.
【考點精析】利用函數的極值與導數對題目進行判斷即可得到答案,需要熟知求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.
科目:高中數學 來源: 題型:
【題目】在中,角A,B,C的對邊分別為a,b,c,R表示的外接圓半徑.
(Ⅰ)如圖,在以O圓心、半徑為2的O中,BC和BA是O的弦,其中,求弦AB的長;
(Ⅱ)在中,若是鈍角,求證:;
(Ⅲ)給定三個正實數a、b、R,其中,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的不存在、存在一個或存在兩個(全等的三角形算作同一個)?在存在的情況下,用a、b、R表示c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2 sin( + )sin( ﹣ )﹣sin(π+x),且函數y=g(x)的圖象與函數y=f(x)的圖象關于直線x= 對稱.
(1)若存在x∈[0, ),使等式[g(x)]2﹣mg(x)+2=0成立,求實數m的最大值和最小值
(2)若當x∈[0, ]時不等式f(x)+ag(﹣x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若f(x)是定義在(0,+∞)上的增函數,且對一切x,y>0,滿足.
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f()<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga (其中a>0,且a≠1).
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性并給出證明;
(3)若x∈時,函數f(x)的值域是[0,1],求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:若關于的方程無實數根,則;命題:若關于的方程有兩個不相等的正實數根,則.
(1)寫出命題的否命題,并判斷命題的真假;
(2)判斷命題“且”的真假,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別是三內角A,B,C所對應的三邊,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若 ,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在框圖中,設x=2,并在輸入框中輸入n=4;ai=i(i=0,1,2,3,4).則此程序執(zhí)行后輸出的S值為( )
A.26
B.49
C.52
D.98
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com