如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長是2,D是棱BC的中點,點M 是棱BB1的中點,又CM⊥AC1,
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)求二面角C-AC1-D的大。

【答案】分析:(I)取B1C1的中點D1,以D點為坐標(biāo)原點,以DD1所在直線為z軸,以DA所在直線為x軸,所在DC所在直線為y軸建立空間直角坐標(biāo)系,設(shè)AA1=m,求出直線A1B的方向向量及平面AC1D的法向量,根據(jù)兩個向量數(shù)量積為0,兩向量垂直,可得A1B∥平面AC1D;
(Ⅱ)分別求出平面AC1D的法向量和平面AC1C的法向量,代入向量夾角公式,即可求出二面角C-AC1-D的余弦值,進而得到二面角C-AC1-D的大。
解答:證明:(I)取B1C1的中點D1,以D點為坐標(biāo)原點,以DD1所在直線為z軸,
以DA所在直線為x軸,所在DC所在直線為y軸建立空間直角坐標(biāo)系,設(shè)AA1=m,

由AC1⊥CM得⇒m=2,故AA1=m=2
連A1C,則A1C∩AC1=N,連DN,易得A1B∥DN,
∵A1B?平面AC1D,DN?平面AC1D,∴A1B∥平面AC1D;
(II)設(shè)平面AC1D的法向量為,
可求得
設(shè)平面AC1C的法向量為,
可求得,

∴二面角C-AC1-D的大小為
點評:本題考查的知識點是用空間向量求平面間的夾角,直線與平面平行的判定,其中解答本題的關(guān)鍵是建立空間坐標(biāo)系,將線面平行問題和二面角問題轉(zhuǎn)化為向量垂直及向量夾角問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長是2,D是棱BC的中點,點M 是棱BB1的中點,又CM⊥AC1,
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)求二面角C-AC1-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長為a,側(cè)棱長為
2
2
a
,D是棱A1C1的中點.
(Ⅰ)求證:BC1∥平面AB1D;
(Ⅱ)求二面角A1-AB1-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正三棱柱ABC-A1B1C1中,所有棱長均為1,求點B1到平面ABC1的距離.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長是2,D是棱BC的中點,點M在棱BB1上,且BM=
13
B1M,又CM⊥AC1
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)求三棱錐B1-ADC1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點,E是A1B1的中點.
(I)求證:A1B1∥平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積.

查看答案和解析>>

同步練習(xí)冊答案