【題目】為了調(diào)查一款電視機的使用時間,研究人員對該款電視機進行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:
并對不同年齡層的市民對這款電視機的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
(1)根據(jù)圖中的數(shù)據(jù),試估計該款電視機的平均使用時間;
(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款電視機”與“市民的年齡”有關(guān);
(3)若按照電視機的使用時間進行分層抽樣,從使用時間在[0,4)和[4,20]的電視機中抽取5臺,再從這5臺中隨機抽取2臺進行配件檢測,求被抽取的2臺電視機的使用時間都在[4,20]內(nèi)的概率.
【答案】(1);(2)有99.9%的把握認(rèn)為“愿意購買該款電視機”與“市民的年齡”有關(guān);(3).
【解析】
(1)所求平均數(shù)為,計算可得結(jié)果;(2)根據(jù)所給數(shù)據(jù)完善列聯(lián)表,利用公式求得,與鄰界值比較,即可得到結(jié)論;(3)根據(jù)分層抽樣方法,求出每個層次應(yīng)抽取的人數(shù),應(yīng)用列舉法求出總事件個數(shù),再求出符合條件的事件數(shù),利用古典概型概率公式可得結(jié)果.
(1)依題意,所求平均數(shù)為
.
(2)依題意,完善表中的數(shù)據(jù)如下所示:
愿意購買該款電視機 | 不愿意購買該款電視機 | 總計 | |
40歲以上 | 800 | 200 | 1000 |
40歲以下 | 400 | 600 | 1000 |
總計 | 1200 | 800 | 2000 |
故;
故有99.9%的把握認(rèn)為“愿意購買該款電視機”與“市民的年齡”有關(guān).
(3)依題意,使用時間在內(nèi)的有1臺,記為A,使用時間在內(nèi)的有4臺,記為a,b,c,d,則隨機抽取2臺,所有的情況為(A,a),(A,b),(A,c),(A,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共10種,
其中滿足條件的為(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6種,
故所求概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),f(x)=-mx2-m+ln(1-m),(m<1).
(Ⅰ)當(dāng)m=時,求f(x)的極值;
(Ⅱ)證明:函數(shù)f(x)有且只有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列與中,,,數(shù)列的前項和滿足,.
(1)求,,,的值,猜測的通項公式,并證明之.
(2)求數(shù)列與的通項公式;
(3)設(shè),.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(其中)滿足下列三個條件:①圖象過坐標(biāo)原點;②對于任意都成立;③方程有兩個相等的實數(shù)根.
(1)求函數(shù)的解析式;
(2)令(其中),求函數(shù)的單調(diào)區(qū)間(直接寫出結(jié)果即可);
(3)研究方程在區(qū)間內(nèi)的解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù),m、n為常數(shù)),函數(shù)定義為:對每一個給定的實數(shù)x,
(1)當(dāng)m、n滿足什么條件時,對所有的實數(shù)x恒成立;
(2)設(shè)a、b是兩個實數(shù),滿足且m,當(dāng)時,求函數(shù)在區(qū)間的上的單調(diào)增區(qū)間的長度之和(用含a、b的式子表示)(閉區(qū)間的長度定義為).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)1時,函數(shù)的值域是________;
(2)若函數(shù)的圖像與直線只有一個公共點,則實數(shù)的取值范圍是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某新建小區(qū)規(guī)劃利用一塊空地進行配套綠化.已知空地的一邊是直路,余下的外圍是拋物線的一段弧,直路的中垂線恰是該拋物線的對稱軸(如圖),點O是的中點.擬在這個地上劃出一個等腰梯形區(qū)域種植草坪,其中均在該拋物線上.經(jīng)測量,直路長為60米,拋物線的頂點P到直路的距離為60米.設(shè)點C到拋物線的對稱軸的距離為m米,到直路的距離為n米.
(1)求出n關(guān)于m的函數(shù)關(guān)系式.
(2)當(dāng)m為多大時,等腰梯形草坪的面積最大?并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知半徑為的圓,圓心在軸正半軸上,且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點,滿足,其中,點的坐標(biāo)是.若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)若在圓上存在點,使得直線與圓相交不同兩點,求的取值范圍.并求出使得的面積最大的點的坐標(biāo)及對應(yīng)的的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com