已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求實數(shù)m的值;
(2)若p是?q的充分條件,求實數(shù)m的取值范圍.
分析:(1)根據(jù)一元二次不等式的解法,對A,B集合中的不等式進行因式分解,從而解出集合A,B,再根據(jù)A∩B=[1,3],求出實數(shù)m的值;
(2)由(1)解出的集合A,B,因為p是?q的充分條件,所以A⊆CRB,根據(jù)子集的定義和補集的定義,列出等式進行求解.
解答:解:由已知得:A={x|-1≤x≤3},
B={x|m-3≤x≤m+3}.
(1)∵A∩B=[1,3]
∴
∴
,
∴m=4;
(2)∵p是?q的充分條件,∴A⊆?
RB,
而C
RB={x|x<m-3,或x>m+3}
∴m-3>3,或m+3<-1,
∴m>6,或m<-4.
點評:此題主要考查集合的定義及集合的交集及補集運算,一元二次不等式的解法及集合間的交、并、補運算是高考中的?純(nèi)容,要認真掌握.屬中檔題.