7.已知命題p:?x∈R,x>sinx,則p的否定形式為¬p:?x∈R,x≤sinx..

分析 根據(jù)特稱命題的否定是全稱命題,由此寫出命題的否定即可.

解答 解:∵命題p:?x∈R,x>sinx,
∴命題p的否定是¬p:?x∈R,x≤sinx.
故答案為:¬p:?x∈R,x≤sinx.

點評 本題考查了特稱命題的否定是全稱命題的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知圓O的方程為 x2+y2=9,若拋物線C過點A(-1,0),B(1,0),且以圓O的切線為準線,則拋物線C的焦點F的軌跡方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(x≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(x≠0)C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(y≠0)D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知$α∈({0,\frac{π}{2}}),cosα=\frac{3}{5}$.
(1)求$sin({\frac{π}{6}+α})$的值;  
 (2)若tan(α+β)=3,求tanβ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知二項式(x-$\frac{a}{\sqrt{x}}$)6的展開式中含x${\;}^{\frac{3}{2}}$項的系數(shù)為20,則${∫}_{a}^{1}(\sqrt{1-{x}^{2}})dx$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設a>0且a≠1函數(shù)f(x)=ax+x2-xlna-a
(1)當a=e時,求函數(shù)f(x)的單調(diào)區(qū)間;(其中e為自然對數(shù)的底數(shù))
(2)求函數(shù)f(x)的最小值;
(3)指出函數(shù)f(x)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,等腰△ABC中,AB=BC=5,AC=6,點E,F(xiàn)分別在AB,BC上,AE=CF=$\frac{5}{4}$,O為AC邊上的中點,EF交BO于點H,將△BEF沿EF折到△B′EF的位置,OB′=$\sqrt{10}$.
(1)證明:B′H⊥平面ABC;
(2)求二面角B-B′A-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知復數(shù)z=$\frac{1+3i}{3-i}$,則z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=x2-2x的遞減區(qū)間為( 。
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知△ABC的邊BC上有一點D滿足$\overrightarrow{BD}$=3$\overrightarrow{DC}$,則$\overrightarrow{AD}$可表示為(  )
A.$\overrightarrow{AD}$=-2$\overrightarrow{AB}$+3$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

同步練習冊答案