9.已知函數(shù)f(x)=x2+bx的圖象過點(1,2),記an=$\frac{1}{f(n)}$.若數(shù)列{an}的前n項和為Sn,則Sn等于( 。
A.$\frac{1}{n}$B.$\frac{1}{n+1}$C.$\frac{n-1}{n}$D.$\frac{n}{n+1}$

分析 先求出b的值,進(jìn)而裂項可知an=$\frac{1}{f(n)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,并項相加即得結(jié)論

解答 解:∵函數(shù)f(x)=x2+bx的圖象過點(1,2),
∴2=1+b,
解得b=1,
∴f(x)=x(x+1),
∴an=$\frac{1}{f(n)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$
故選:D

點評 本題考查數(shù)列的通項及前n項和,考查裂項相消法,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,是相等函數(shù)的是( 。
A.f(x)=|x|,$g(x)=\sqrt{x^2}$B.f(x)=2x,g(x)=2(x+1)
C.$f(x)=\sqrt{{{(-x)}^2}}$,$g(x)={(\sqrt{-x})^2}$D.$f(x)=\frac{{{x^2}+x}}{x+1}$,g(x)=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.使不等式23x-1>2成立的x取值范圍為( 。
A.($\frac{2}{3}$,+∞)B.(1,+∞)C.($\frac{1}{3}$,+∞)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.由直線x=0,x=2,曲線y=ex及x軸所圍成圖形的面積是(  )
A.e-$\frac{1}{e}$B.e-1C.e2-1D.$\frac{1}{e}$-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.$\sqrt{5}$+2與$\sqrt{5}$-2兩數(shù)的等比中項是( 。
A.1B.-1C.±1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正數(shù)x,y滿足x+8y=xy,則x+2y的最小值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\sqrt{2}{sin^2}x-\sqrt{2}sinx•cosx-\frac{{\sqrt{2}}}{2}$.
(1)求函數(shù)y=f(x)的解析式,并用“五點法作圖”在給出的直角坐標(biāo)系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(2)設(shè)α∈(0,π),f($\frac{α}{2}$)=$-\frac{1}{2}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一幾何體的三視圖如下,求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)ω>0,函數(shù)y=sin(ωx+$\frac{π}{3}$)的圖象向右平移$\frac{4π}{3}$個單位后與原圖象重合,則ω的最小值是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步練習(xí)冊答案