如圖,已知正方體ABCD-A1B1C1D1的棱長為2,M為正方形AA1D1D的中心,N為棱AB的中點.
(Ⅰ)求證:MN∥平面BB1D1D;
(Ⅱ)求四棱錐N-BB1D1D的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定
專題:綜合題,空間位置關系與距離
分析:(Ⅰ)取AD中點O,連接OM,ON,證明OM∥D1D,ON∥BD,可得平面MON∥平面BB1D1D,即可證明MN∥平面BB1D1D;
(Ⅱ)求出N到平面BB1D1D的距離,即可求四棱錐N-BB1D1D的體積.
解答: (Ⅰ)證明:取AD中點O,連接OM,ON,
∵M為正方形AA1D1D的中心,N為棱AB的中點,
∴OM∥D1D,ON∥BD,
∵OM∩ON=O,D1D∩BD=D,
∴平面MON∥平面BB1D1D,
∵MN?平面MON,
∴MN∥平面BB1D1D;
(Ⅱ)解:N到平面BB1D1D的距離為
2
4
•2=
2
2

∴四棱錐N-BB1D1D的體積為
1
3
2
•2•
2
2
=
2
3
點評:本題考查線面平行,考查四棱錐N-BB1D1D的體積,正確運用面面平行的判定與性質定理是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個動點,DC⊥平面ABC,DC∥BE,CD=BE,AB=4,tan∠EAB=
1
4

(1)證明:平面ADE⊥平面ACD;
(2)試探究當C在什么位置時三棱錐C-ADE的體積取得最大值,請說明理由并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
x
+2lnx-1,a∈R.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間(0,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率為為
2
2
.點P在橢圓E上,且△PF1F2的周長為4
2
+4.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l:y=x+m與橢圓E交于A,B兩點,O為坐標原點,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
ex-e-x
2
,g(x)=
ex+e-x
2
,求證:g(2x)=[g(x)]2+[f(x)]2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方形ABCD=A1B1C1D1中,AB=2,O為底面正方形A1B1C1D1的中心,E、F分別為A1B1、B1C1的中點,點M為EF上一點,且滿足
EM
=
2
3
EF
,P為正方體底面ABCD上的點.
(Ⅰ)求證:平面DEF⊥平面BB1DD1
(Ⅱ)若OP與DM相交,試判斷OM與DP的位置關系;
(Ⅲ)在(Ⅱ)的條件下,求平面CDP與平面DPO所成銳二面角的大小為θ,求cosθ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,側棱PD⊥底面ABCD,底面ABCD是正方形,若PD=DA,M是PC的中點.
(Ⅰ)證明:PA∥平面BDM
(Ⅱ)若PD=
2
,求點C到平面BDM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:(1+1)(1+
1
3
)(1+
1
5
)…(1+
1
2n-1
)>
2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定正整數(shù)k≥3,若項數(shù)為k的數(shù)列{an}滿足:對任意的i=1、2、…、k,均有ai
Sk
k-1
(其中Sk=a1+a2+…+ak),則稱數(shù)列{an}為“Γ數(shù)列”.
(Ⅰ)判斷數(shù)列-1,3,5,2,4和
3
4
,
32
42
,
33
43
是否是“Γ數(shù)列”,并說明理由;
(Ⅱ)若{an}為“Γ數(shù)列”,求證:ai≥0對i=1,2,…,k恒成立;
(Ⅲ)設{bn}是公差為d的無窮項等差數(shù)列,若對任意的正整數(shù)m≥3,b1,b2,…,bm均構成“Γ數(shù)列”,求{bn}的公差d.

查看答案和解析>>

同步練習冊答案