已知函數(shù)f(x)對(duì)定義域內(nèi)任意x,y,有f(x+y)=
f(x)+f(y)1-f(x)f(y)
且f(1)=1,則f(2011)=
-1
-1
分析:函數(shù)f(x)對(duì)定義域內(nèi)任意x,y,有f(x+y)=
f(x)+f(y)
1-f(x)f(y)
,令x=y=0,解得f(0)=0.令y=-x,解得函數(shù)f(x)是奇函數(shù).由f(x+y)=
f(x)+f(y)
1-f(x)f(y)
,解得f(x)是以4為周期的周期函數(shù),再由f(1)=1,能求出f(2011).
解答:解:∵函數(shù)f(x)對(duì)定義域內(nèi)任意x,y,有f(x+y)=
f(x)+f(y)
1-f(x)f(y)
,
∴令x=y=0,得f(0)=
2f(0)
1-[f(0)]2
,解得f(0)=0.
令y=-x,得f(0)=
f(x)+f(-x)
1-f(x)f(-x)
=0,
∴f(-x)=-f(x),即函數(shù)f(x)是奇函數(shù).
f(x+y)=
f(x)+f(y)
1-f(x)f(y)

∴f(x+1)=
1+f(x)
1-f(x)
,
∴f(x+2)=
1+f(x+1)
1-f(x+1)
=
1+
1+f(x)
1-f(x)
1-
1+f(x)
1-f(x)
=-
1
f(x)

∴f(x+4)=-
1
f(x+2)
=f(x),
∴f(x)是以4為周期的周期函數(shù),
∵f(1)=1,
∴f(2011)=f(503×4-1)=f(-1)=-f(1)=-1.
故答案為:-1.
點(diǎn)評(píng):本題考查函數(shù)值的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意函數(shù)的奇偶性、周期性的求法的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
(1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
(3)對(duì)于(2)中的g(a),設(shè)H(a)=-
16
[g(a)-27]
,數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南)已知函數(shù)f(x)=eax-x,其中a≠0.
(1)若對(duì)一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖象上取定兩點(diǎn)A(x1,f(x1)),B(x2,f(x2)(x1<x2),記直線AB的斜率為K,問(wèn):是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+ax.
(I)若對(duì)一切x>0,f(x)≤1恒成立,求a的取值范圍;
(II)在函數(shù)f(x)的圖象上取定兩點(diǎn)A(x1,f(x1)),B(x2,f(x)2)(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使f′(x0)=k成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果對(duì)任意x∈(1,2],f'(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請(qǐng)求出;若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a)并求出g(a)的最小值;
(3)對(duì)于(2)中的g(a),設(shè)H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對(duì)數(shù)的底)的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+b(a,b為實(shí)常數(shù))的零點(diǎn)與函數(shù)g(x)=2x2+4x-30的零點(diǎn)相同,數(shù)列{an},{bn}定義為:a1=
1
2
,2an+1=f(an)+15,bn=
1
2+an
(n∈N*).
(1)求實(shí)數(shù)a,b的值;
(2)若將數(shù)列{bn}的前n項(xiàng)和與數(shù)列{bn}的前n項(xiàng)積分別記為Sn,Tn證明:對(duì)任意正整數(shù)n,2n+1Tn+Sn為定值;
(3)證明:對(duì)任意正整數(shù)n,都有2[1-(
4
5
n]≤Sn<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案