已知函數(shù)f(x)的定義域?yàn)镽,則下列命題中:
①y=f(x)為偶函數(shù),則y=f(x+2)的圖象關(guān)于y軸對(duì)稱(chēng);
②y=f(x+2)為偶函數(shù),則y=f(x)關(guān)于直線x=2對(duì)稱(chēng);
③若f(x-2)=f(2-x),則y=f(x)關(guān)于直線x=2對(duì)稱(chēng);
④y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱(chēng).
其中正確命題序號(hào)有 .(填上所有正確命題序號(hào))
【答案】分析:根據(jù)偶函數(shù)的圖象關(guān)于y軸(x=0)對(duì)稱(chēng),將函數(shù)f(x)的圖象向左平移兩個(gè)單位后得到f(x+2)的圖象(將函數(shù)f(x+2)的圖象向右平移兩個(gè)單位后得到f(x)的圖象),根據(jù)函數(shù)圖象的平移,對(duì)稱(chēng)軸也跟著平移的原則,可對(duì)①②進(jìn)行判斷.對(duì)于③,將x-2看成整體,可得f(x)是偶函數(shù),從而其圖象關(guān)于y軸對(duì)稱(chēng);對(duì)于④從兩個(gè)函數(shù)的形式上可以看出,此兩函數(shù)都是抽象函數(shù),可以分別看作函數(shù)y=f(x)與y=f(-x)的圖象向右移了兩個(gè)單位而得到,由此問(wèn)題變化為研究f(x)與y=f(-x)的圖象的對(duì)稱(chēng)性,再由平移規(guī)律得出函數(shù)y=f(x-2)與y=f(2-x)的圖象的對(duì)稱(chēng)軸即可.
解答:解:∵f(x)是偶函數(shù),
∴函數(shù)f(x)的圖象關(guān)于y軸(x=0)對(duì)稱(chēng)
將函數(shù)f(x)的圖象向左平移兩個(gè)單位后得到f(x+2)的圖象
故f(x+2)的圖象關(guān)于x=-2對(duì)稱(chēng),①不正確;
反之當(dāng)f(x+2)是偶函數(shù)時(shí),函數(shù)f(x+2)的圖象關(guān)于y軸(x=0)對(duì)稱(chēng)
將函數(shù)f(x+2)的圖象向右平移兩個(gè)單位后得到f(x)的圖象
函數(shù)f(x)的圖象關(guān)于x=2對(duì)稱(chēng),②正確;
對(duì)于③,將x-2看成整體,可得f(t)=f(-t),從而f(x)是偶函數(shù),從而其圖象關(guān)于y軸對(duì)稱(chēng);故③錯(cuò);
④:∵f(x)與y=f(-x)的圖象關(guān)于直線x=0對(duì)稱(chēng)
又函數(shù)y=f(x-2)與y=f(2-x)的圖象可以由f(x)與y=f(-x)的圖象向右移了個(gè)單位而得到,
∴函數(shù)y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱(chēng),正確.
故答案為:②④.
點(diǎn)評(píng):本題考點(diǎn)是兩個(gè)函數(shù)圖象的對(duì)稱(chēng)性、奇偶函數(shù)圖象的對(duì)稱(chēng)性質(zhì),函數(shù)圖象的平移變換,考查根據(jù)已知函數(shù)圖象的性質(zhì)來(lái)判斷與之相關(guān)函數(shù)性質(zhì)的能力,即圖象變換的能力,其中正確理解函數(shù)圖象的平移,對(duì)稱(chēng)軸也跟著平移的原則,是解答本題的關(guān)鍵.