Loading [MathJax]/jax/output/CommonHTML/jax.js
8.已知集合A={x|x2-2mx+m+6=0},B={x|x<0},若命題“A∩B=∅”是假命題,求實(shí)數(shù)m的取值范圍.

分析 根據(jù)A,B,以及A與B的交集不為空集,得到A中方程有負(fù)根,確定出m的范圍即可.

解答 解:由題意得方程x2-2mx+m+6=0有負(fù)根,
①若方程無(wú)根,則△<0,即4m2-4(m+6)<0,
解得:-2<m<3;
②若方程無(wú)負(fù)根,則{△≥02m0m+60,
解得:m≥3,
由①②知,m>-2,
則當(dāng)方程有負(fù)根時(shí),m的范圍為m≤-2.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等差數(shù)列{an}中,a2=5,a6=17,若從數(shù)列{an}中依次取出第3項(xiàng),第9項(xiàng),第27項(xiàng),…,第3n項(xiàng),按原來(lái)的順序構(gòu)成一個(gè)新的數(shù)列{bn}.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=3nbn+1(n∈N*),Tn=c1+c2+…+cn(n∈N*),證明:Tn34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=-x2-2x,現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,根據(jù)圖象:
(1)畫出函數(shù)f(x)在y軸右側(cè)圖象,并寫出函數(shù)f(x)(x∈R)的單調(diào)遞增區(qū)間;
(2)寫出函數(shù)f(x)(x∈R)的解析式;
(3)若函數(shù)g(x)=f(x)-2ax+2(x∈[0,2]),求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如果散點(diǎn)圖中的所有樣本點(diǎn)都落在一條斜率為非零實(shí)數(shù)的直線上,R2是相關(guān)指數(shù),則( �。�
A.R2=1B.R2=0C.0≤R2≤1D.R2≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)f(x)=x2-4x+a+3,
(1)若函數(shù)y=f(x)在[-1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(x),x∈[t,4]的值域?yàn)閰^(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為7-2t?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由(注:區(qū)間[p,q]的長(zhǎng)度為q-p).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)(5x-1xn的展開(kāi)式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,若M-N=56,則n=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,EC∥PD.且PD=2EC=2
(1)求證:AC∥平面PBE;
(2)若AD=1,求直線PB與底面ABCD所成角的大小;
(3)若AD=1,求四棱錐B-PDCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)全集U={1,2,3,4,5,6,7,8},A⊆U,B⊆U,且滿足A∩B={3},(∁UB)∩A={1,2},(∁UA)∩B={4,5},則∁U(A∪B)=(  )
A.{6,7,8}B.{7,8}C.{5,7,8}D.{5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,正方形ABCD的邊長(zhǎng)為22,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),且FO⊥平面ABCD,F(xiàn)O=3
(1)求BF與平面ABCD所成的角的正切值;
(2)求三棱錐O-ADE的體積;
(3)求證:平面AEF⊥平面BCF.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹