【題目】如圖,建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標(biāo)不超過多少時(shí),炮彈可以擊中它?請(qǐng)說明理由.
【答案】(1)炮的最大射程是10千米.
(2)當(dāng)不超過6千米時(shí),炮彈可以擊中目標(biāo).
【解析】
試題(1)求炮的最大射程即求(k>0)與x軸的橫坐標(biāo),求出后應(yīng)用基本不等式求解.(2)求炮彈擊中目標(biāo)時(shí)的橫坐標(biāo)的最大值,由一元二次方程根的判別式求解
試題解析:(1)令y=0,得kx-(1+k2)x2=0,
由實(shí)際意義和題設(shè)條件知x>0,k>0,
故x==≤=10,當(dāng)且僅當(dāng)k=1時(shí)取等號(hào).所以炮的最大射程為10千米.
(2)因?yàn)?/span>a>0,所以炮彈可擊中目標(biāo)
存在k>0,使3.2=ka-(1+k2)a2成立
關(guān)于k的方程a2k2-20ak+a2+64=0有正根
判別式Δ=(-20a)2-4a2(a2+64)≥0
a≤6.
所以當(dāng)a不超過6(千米)時(shí),可擊中目標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代著名的數(shù)學(xué)家劉徽著有《海島算經(jīng)》.內(nèi)有一篇:“今有望海島,立兩表齊、高三丈,前后相去千步,今后表與前表相直,從前表卻行百二十三步,人目著地望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高及去表各幾何?”(參考譯文:假設(shè)測(cè)量海島,立兩根標(biāo)桿,高均為5步,前后相距1000步,令前后兩根標(biāo)桿的底部和島的底部在同一水平直線上,從前標(biāo)桿退行123步,人的視線從地面(人的高度忽略不計(jì))過標(biāo)桿頂恰好觀測(cè)到島峰,從后標(biāo)桿退行127步,人的視線從地面過標(biāo)桿頂恰好觀測(cè)到島峰,問島高多少?島與前標(biāo)桿相距多遠(yuǎn)?)(丈、步為古時(shí)計(jì)量單位,三丈=5步).則海島高度為
A. 1055步 B. 1255步 C. 1550步 D. 2255步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工業(yè)部門計(jì)劃對(duì)所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對(duì)所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:
支持 | 不支持 | 合計(jì) | |
中型企業(yè) | 40 | ||
小型企業(yè) | 240 | ||
合計(jì) | 560 |
已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.
(1)能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?
(2)從上述支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出12家企業(yè),然后從這12家企業(yè)選出9家進(jìn)行獎(jiǎng)勵(lì),分別獎(jiǎng)勵(lì)中型企業(yè)50萬元,小型企業(yè)10萬元.設(shè)為所發(fā)獎(jiǎng)勵(lì)的金額.
求的分布列和期望.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),其中.
(1)在區(qū)間上,是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說明理由.
(2)若函數(shù)的兩個(gè)極值點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某種設(shè)備的使用年限(年)與所支出的維修費(fèi)用 (萬元)有如下統(tǒng)計(jì):
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, . ,
(1)求, ;
(2)與具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為F,已知直線與拋物線C交于A,B兩點(diǎn)(A,B兩點(diǎn)分別在軸的上、下方).
(1)求證:;
(2)已知弦長(zhǎng),試求:過A,B兩點(diǎn),且與直線相切的圓D的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,錯(cuò)誤的是( )
A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差不變
B.對(duì)于回歸方程,變量每增加一個(gè)單位,平均增加5個(gè)單位
C.線性回歸方程所對(duì)應(yīng)的直線必過點(diǎn)
D.在一個(gè)列聯(lián)表中,由計(jì)算得,則有的把握說兩個(gè)變量有關(guān)
本題可以參考獨(dú)立性檢驗(yàn)臨界值表
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為,已知點(diǎn)為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.過弦的中點(diǎn)作拋物線準(zhǔn)線的垂線,垂足為,則的最大值為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com