若1+i是實系數(shù)一元二次方程x2+px+q=0的一個根,則p+q=
 
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:由已知結(jié)合實系數(shù)一元二次方程的虛根成對原理得到方程的另一根,然后由根與系數(shù)關(guān)系求得p,q的值,則答案可求.
解答: 解:∵1+i是實系數(shù)一元二次方程x2+px+q=0的一個根,
由實系數(shù)一元二次方程的虛根成對原理,可得方程另一根為1-i,
1+i+1-i=-p
(1+i)(1-i)=q
,解得p=-2,q=2.
∴p+q=0.
故答案為:0.
點評:本題考查了實系數(shù)一元二次方程的虛根成對原理,考查了根與系數(shù)的關(guān)系,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某高校第大一學(xué)生參加社會實踐活動次數(shù)進行統(tǒng)計,隨機抽取n名學(xué)生作為樣本,得到這n名學(xué)生參加社會實踐活動的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下:
分組頻數(shù)頻率
[10,15)100.25
[15,20)25m
[20,25)xp
[25,30)20.05
合計n1
(Ⅰ)若該高校大一學(xué)生有3600人,試估計該校大一學(xué)生參加社會實踐活動的次數(shù)在區(qū)間[20,25)內(nèi)的人數(shù);
(Ⅱ)在所取樣本中,從參加社會實踐活動的次數(shù)不少于29次的學(xué)生中任選2人,求至少一人參加社會實踐活動次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零向量
a
、
b
、
c
滿足|
a
|=|
b
|=|
c
|,
a
+
b
=
c
,則
a
b
的夾角為( 。
A、150°B、120°
C、90°D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在底面直徑為6的圓柱形容器中,放入一個半徑為2的冰球,當冰球全部溶化后,容器中液面的高度為
 
.(相同質(zhì)量的冰與水的體積比為10:9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2
ex-1
的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有50名學(xué)生,一次數(shù)學(xué)考試的成績ξ服從正態(tài)分布N(105,102),已知P(95≤ξ≤105)=0.32,估計該班學(xué)生數(shù)學(xué)成績在115分以上的人數(shù)為( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,若
.
a+b+c3a
ba+b-c
.
=0
,則角C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對邊,D為邊AC的中點,a=3
2
,cos∠ABC=
2
4

(Ⅰ)若c=3,求sin∠ACB的值;
(Ⅱ)若BD=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式log2(4x-3)>x+1的解集是
 

查看答案和解析>>

同步練習(xí)冊答案