【題目】設橢圓,定義橢圓C相關圓E:.若拋物線的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.

1)求橢圓C及其相關圓E的方程;

2)過相關圓E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:為定值(為坐標原點);

3)在(2)的條件下,求面積的取值范圍.

【答案】1,;(2)證明見解析;(3.

【解析】

1)由題設知,又,從而可得,得橢圓方程,及相關圓方程;

2)對直線斜率進行討論,斜率不存在時,直接寫出直線方程,求出坐標,得,

斜率存在時,設直線方程為,與橢圓方程聯(lián)立方程組,消元后得關于的二次方程,有韋達定理得,由直線與圓相切得關系,計算也可得,定值.

3)由于是“相關圓”半徑,所以,結(jié)合韋達定理求得,并得到其范圍,從而得面積的范圍.

1)拋物線的焦點是,與橢圓的一個焦點重合,∴,又,所以

橢圓方程為,“相關圓”的方程為

2)當直線斜率不存在時,不妨設其方程為,則,可得

當直線斜率存在時,設其方程為,設,由

,即,

由韋達定理得

因為直線與圓相切,所以,整理得,

所以,所以,,為定值.

3)由于,因此求面積的取值范圍只要求弦長的取值范圍.

當直線斜率不存在時,,

當直線斜率存在時,

時,0

時,,

,即,當且僅當時,

所以的取值范圍是,

面積的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機在空中的點處對它們進行數(shù)據(jù)測量,在同一時刻測得 .(船只與無人機的大小及其它因素忽略不計)

(1)求此時無人機到甲、丙兩船的距離之比;

(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列、滿足:,,

1)求,,;

2)求證:數(shù)列是等差數(shù)列,并求的通項公式;

3)設,若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學不僅讓人們感悟到科學與藝木的融合,數(shù)學與藝術審美的統(tǒng)一,而且還有其深刻的科學方法論意義.如圖,由波蘭數(shù)學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形.

若在圖④中隨機選取-點,則此點取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】任意實數(shù),定義,設函數(shù),數(shù)列是公比大于0的等比數(shù)列,且,,則____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列滿足則稱數(shù)列.

1)若數(shù)列,試寫出的所有可能值;

2)若數(shù)列,且的最大值;

3)對任意給定的正整數(shù)是否存在數(shù)列使得?若存在,寫出滿足條件的一個數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線),過點)的直線交于、兩點.

1)若,求證:是定值(是坐標原點);

2)若是確定的常數(shù)),求證:直線過定點,并求出此定點坐標;

3)若的斜率為1,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且函數(shù)的圖象與函數(shù)的圖象關于直線對稱.

1)若存在,使等式成立,求實數(shù)m的最大值和最小值

2)若當時不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)有800名學員參加交通法規(guī)考試,考試成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,,規(guī)定90分及以上為合格:

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖估計該地區(qū)學員交通法規(guī)考試合格的概率;

(3)若三個人參加交通法規(guī)考試,估計這三個人至少有兩人合格的概率.

查看答案和解析>>

同步練習冊答案