【題目】已知函數(shù)f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)設x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值.
(2)設函數(shù)h(x)=f(x)+g(x),若不等式|h(x)﹣m|≤1在[﹣ , ]上恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:f(x)=cos2(x+ )=

得所以函數(shù)的對稱軸為

因為x=x0是函數(shù)y=f(x)圖象的一條對稱軸,所以

所以 ,

若k是偶數(shù),則 ,

若k是奇數(shù),則


(2)解:h(x)=f(x)+g(x)= cos(2x+ )+1+ sin2x= + cos2x﹣ sin2x)+1+ sin2x

= + cos2x+ sin2x)+1=

因為x∈[﹣ , ],所以 ,

所以 ,所以要使|h(x)﹣m|≤1恒成立,

即﹣1≤m﹣h(x)≤1,

所以h(x)﹣1≤m≤1+h(x).

所以1


【解析】(1)利用三角函數(shù)對稱軸的性質確定x0的值,然后代入求值即可.(2)求出函數(shù)h(x)=f(x)+g(x)的最值即可.
【考點精析】本題主要考查了二倍角的余弦公式和三角函數(shù)的最值的相關知識點,需要掌握二倍角的余弦公式:;函數(shù),當時,取得最小值為;當時,取得最大值為,則,才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)f(x)=4sin(2x )(x∈R),有下列命題: ①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關于點 對稱;
④y=f(x)的圖象關于直線x=﹣ 對稱.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生在一門功課的22次考試中,所得分數(shù)莖葉圖如圖所示,則此學生該門功課考試分數(shù)的極差與中位數(shù)之和為(

A.117
B.118
C.118.5
D.119.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若f(x+1)的定義域為[0,1],則函數(shù)f(2x﹣2)的定義域為(
A.[log23,2]
B.[0,1]
C.
D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC滿足| |=3,| |=4,O是△ABC所在平面內一點,滿足| |=| |=| |,且 + (λ∈R),則cos∠BAC=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個動點,∠CPB=α,∠DPA=β. (Ⅰ)當 最小時,求tan∠DPC的值;
(Ⅱ)當∠DPC=β時,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界. 已知函數(shù)f(x)=1+a( x+( x;g(x)=
(Ⅰ)當a=1時,求函數(shù)f(x)值域并說明函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù)?
(Ⅱ)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)已知m>﹣1,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)證明f(x)在(0,+∞)上單調遞增;
(2)是否存在實數(shù)a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說明理由.

查看答案和解析>>

同步練習冊答案