分析 將函數(shù)進行化簡,結(jié)合三角函數(shù)的圖象和性質(zhì)即可求.
解答 解:函數(shù)f(x)=cosx•cos(x-$\frac{π}{3}$),
化簡得f(x)=cosx•cosx$•cos\frac{π}{3}$+cosx$•sinx•six\frac{π}{3}$
=$\frac{1}{2}co{s}^{2}x$+$\frac{\sqrt{3}}{4}sin2x$
=$\frac{1}{2}(\frac{1}{2}+\frac{1}{2}cos2x)+\frac{\sqrt{3}}{4}sin2x$
=$\frac{\sqrt{3}}{4}sin2x+\frac{1}{4}cos2x+\frac{1}{4}$
=$\frac{1}{2}sin(2x+\frac{π}{6})+\frac{1}{4}$
要使f(x)<$\frac{1}{4}$成立,
則sin(2x+$\frac{π}{6}$)<0,即$2kπ-π<2x+\frac{π}{6}<2kπ,(k∈Z)$
解得:$kπ-\frac{7π}{12}<x<kπ-\frac{π}{12}$.
故答案為:($kπ-\frac{7π}{12},kπ-\frac{π}{6}$),(k∈Z)
點評 本題考查了三角函數(shù)的化簡能力和計算能力,三角函數(shù)的性質(zhì)的運用.屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b<a<c | B. | c<a<b | C. | a<b<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com