設(shè)f(x),g(x)都是R上的奇函數(shù),{x|f(x)0}={x|4x10},{x|g(x)0}={x|2x5},則集合{x|f(x)·g(x)0}等于

[  ]

A(210)

B(4,5)

C(10,―2)(2,10)

D(5,―4)(45)

答案:D
解析:

解題思路:∵f(x),g(x)都是奇函數(shù),

∴f(x)·g(x)是偶函數(shù),

由對(duì)稱性,只需求f(x)0,g(x)0的解集,

由條件可知:f(x)0的解集為(4,10)g(x)0的解集為(2,5)

的解集為(4,5)

f(x)·g(x)0的解集為(5,―4)(45),故選D


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:哈師大附中2008-2009年度高二下學(xué)期第一次月考考試數(shù)學(xué)試卷 文科 題型:022

設(shè)f(x)、g(x)是定義域?yàn)镽的恒大于零的可導(dǎo)函數(shù),且(x)g(x)-f(x)(x)<0,則當(dāng)a<x<b時(shí),下列結(jié)論正確的有________.(寫(xiě)出所有正確結(jié)論的序號(hào))

①f(x)g(x)>f(b)g(b)

②f(x)g(a)<f(a)g(x)

③f(x)g(b)>f(b)g(x)

④f(x)g(x)<f(a)g(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)、g(x)都是單調(diào)函數(shù),有如下四個(gè)命題,其中正確的命題為(    )

①若f(x)單調(diào)遞增,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞增  ②若f(x)單調(diào)遞增,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞增  ③若f(x)單調(diào)遞減,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞減  ④若f(x)單調(diào)遞減,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞減

A.①③               B.①④              C.②③                D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)、g(x)在[a,b]上可導(dǎo),且f′(x)>g′(x),則當(dāng)a<x<b時(shí),有(    )

A.f(x)>g(x)                               B.f(x)<g(x)

C.f(x)+g(a)>g(x)+f(a)              D.f(x)+g(b)>g(x)+f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市豐臺(tái)區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:選擇題

設(shè)f(x)、g(x)是R上的可導(dǎo)函數(shù),分別是f(x)、g(x)的導(dǎo)函數(shù),且,則當(dāng)時(shí),有(    )

A. f(x)g(x)>f(b)g(b)         B. f(x)g(a)>f(a)g(x) 

C. f(x)g(b)>f(b)g(x)         D. f(x)g(x)>f(a) g(a)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)f(x),g(x)都是定義在R上的單調(diào)函數(shù),有如下四個(gè)命題:
①若f(x)單調(diào)遞增,g(x)單調(diào)遞增,則f(x)·g(x)單調(diào)遞增;
②若f(x)單調(diào)遞增,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞增;
③若f(x)單調(diào)遞減,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞減;
④若f(x)單調(diào)遞增,g(x)單調(diào)遞減,則f(x)·g(x)單調(diào)遞減.

其中正確命題個(gè)數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

同步練習(xí)冊(cè)答案