【題目】已知長方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點(diǎn),如圖所示.
(Ⅰ)在所給圖中畫出平面ABD1與平面B1EC的交線(不必說明理由);
(Ⅱ)證明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1與平面B1EC所成銳二面角的大小.

【答案】解:(Ⅰ)連接BC1交B1C于M,則直線ME即為平面ABD1與平面B1EC的
交線,如圖所示;

(Ⅱ)由(Ⅰ)因?yàn)樵陂L方體AC1中,所以M為BC1的中點(diǎn),又E為D1C1的中點(diǎn)
所以在△D1C1B中EM是中位線,所以EM∥BD1 ,
又EM平面B1EC,BD1平面B1EC,
所以BD1∥平面B1EC;)
(Ⅲ)因?yàn)樵陂L方體AC1中,所以AD1∥BC1
平面ABD1即是平面ABC1D1 , 過平面B1EC上
點(diǎn)B1作BC1的垂線于F,如平面圖①,

因?yàn)樵陂L方體AC1中,AB⊥平面B1BCC1 , B1F平面B1BCC1 , 所以B1F⊥AB,BC1∩AB=B,
所以B1F⊥平面ABD1于F.
過點(diǎn)F作直線EM的垂線于N,如平面圖②,

連接B1N,由三垂線定理可知,B1N⊥EM.由二面角的平面角定義可知,在Rt△B1FN中,∠B1NF即是平面ABD1與平面B1EC所成銳二面角的平面角.
因長方體AC1中,AD=AB=2,AA1=1,在平面圖①中, ,
,C1E=1,在平面圖②中,由△EMC1相似△FMN1可知 = = ,
所以tan∠B1NF= =
所以平面ABD1與平面B1EC所成銳二面角的大小為arctan2
空間向量解法:
(Ⅰ)見上述.
(Ⅱ)因?yàn)樵陂L方體AC1中,所以DA,DC,DD1兩兩垂直,于是以DA,DC,DD1所在直線分別為x,y,z軸,以D為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,
因?yàn)锳D=AB=2,AA1=1,所以D(0,0,0),D1(0,0,1),B(2,2,0),B1(2,2,1),C(0,2,0),E(0,1,1).所以 , ,…(6分)
令平面B1EC的一個(gè)法向量為
所以 , ,從而有,

,即 ,不妨令x=﹣1,
得到平面B1EC的一個(gè)法向量為 ,
,所以 ,又因?yàn)锽D1平面B1EC,
所以BD1∥平面B1EC.
(Ⅲ)由(Ⅱ)知 , ,令平面ABD1的一個(gè)法向量為 ,
所以 , ,從而有, ,即 ,不妨令x=1,
得到平面ABD1的一個(gè)法向量為 ,
因?yàn)? =
所以平面ABD1與平面B1EC所成銳二面角的大小為
【解析】(Ⅰ)連接BC1交B1C于M即可得到平面ABD1與平面B1EC的交線;(Ⅱ)根據(jù)線面平行的判定定理即可證明:BD1∥平面B1EC;(Ⅲ)方法1,根據(jù)幾何法作出二面角的平面角即可求平面ABD1與平面B1EC所成銳二面角的大。椒2,建立坐標(biāo)系,求出平面的法向量,利用向量法進(jìn)行求解.
【考點(diǎn)精析】掌握直線與平面平行的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校今年準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12,則報(bào)考飛行員的總?cè)藬?shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長為定值b,則下面的四個(gè)值中不為定值的是(

A.點(diǎn)P到平面QEF的距離
B.三棱錐P﹣QEF的體積
C.直線PQ與平面PEF所成的角
D.二面角P﹣EF﹣Q的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得 , , ,其中為抽取的第個(gè)零件的尺寸,

(1)求 的相關(guān)系數(shù),并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

(ⅰ)從這一天抽檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?

(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)

附:樣本 的相關(guān)系數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,則該球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長為 的正方形,PA⊥BD.

(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點(diǎn),EF⊥平面PCD,求直線PB與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于給定的正整數(shù)k,若數(shù)列{an}滿足

=2kan對任意正整數(shù)n(n> k) 總成立,則稱數(shù)列{an} 是“P(k)數(shù)列”.

(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;

若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,前n項(xiàng)和為, 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案