5.在《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱為陽馬,將四個(gè)面都為直角三角形的四面體稱為鱉臑,某幾何體τ的三視圖如圖所示,將該幾何體分別沿棱和表面的對角線截開可得到到一個(gè)鱉臑和一個(gè)陽馬,設(shè)V表示體積,則Vτ的外接球:V陽馬:V鱉臑=( 。
A.9π:2:1B.3$\sqrt{3}$π:3:1C.3$\sqrt{3}$π:2:1D.3$\sqrt{3}$π:1:1

分析 首先還原幾何體為三棱柱,根據(jù)數(shù)學(xué)文化得到一個(gè)鱉臑和一個(gè)陽馬幾何體以及計(jì)算體積.

解答 解:由已知得到幾何體是以邊長為2的等腰三角形為底面,高為2的三棱柱,
其外接球的體積為$\frac{4}{3}π(\sqrt{3})^{3}$=4$\sqrt{3}π$,由題意,得到一個(gè)鱉臑的體積為$\frac{1}{3}×\frac{1}{2}×2×2×2=\frac{4}{3}$,一個(gè)陽馬的體積為$\frac{1}{3}×2×2×2=\frac{8}{3}$,
所以Vτ的外接球:V陽馬:V鱉臑=4$\sqrt{3}π$:$\frac{8}{3}$:$\frac{4}{3}$=3$\sqrt{3}π$:2:1;
故選C.

點(diǎn)評 本題考查了數(shù)學(xué)文化以及由幾何體的三視圖求相關(guān)幾何體的體積;關(guān)鍵是正確理解數(shù)學(xué)文化,正確還原幾何體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.按如圖所示的程序框圖,若輸入a=110101,則輸出的b=( 。
A.53B.51C.49D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),等差數(shù)列{bn}滿足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD丄底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD,BC=$\frac{1}{2}$AD
(I)求證:平面PQB⊥平面PAD
(Ⅱ)若三棱錐A-BMQ的體積是四棱錐P-ABCD體積的$\frac{1}{6}$,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}為等差數(shù)列,a1=sinθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),a5=a3+1,且其前10項(xiàng)和S10=$\frac{55}{2}$.
(1)求θ的值;
(2)求數(shù)列bn=an+($\frac{1}{2}$)${\;}^{2{a}_{n}}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)f(x)=ex-e-x-x.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1-a)x]+(1-a)x3.若對所有x≥0,都有g(shù)(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱錐P-ABC中,底面ABC為等邊三角形,O為△ABC的中心,平面PBC⊥平面ABC,PB=PC=BC=$\sqrt{3}$,D為AP上一點(diǎn),且AD=2DP.
(I)求證:DO∥平面PBC;
(II)求證:AC⊥平面OBD;
(III)設(shè)M為PC的中點(diǎn),求二面角M-BD-O的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若a=2,b=1,求函數(shù)f(x)在x=1處的切線方程;
(II) 若f(x)在x=1處取得極值,討論函數(shù)f(x)的單調(diào)性;
(III)當(dāng)a=1時(shí),設(shè)函數(shù)φ(x)=f(x)-x2有兩個(gè)零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+2x-\frac{5}{4},(x≤1)\\{log_{\frac{1}{3}}}x-\frac{1}{4}.(x>1)\end{array}$,g(x)=|A-2|•sinx(x∈R),若對任意的x1、x2∈R,都有f(x1)≤g(x2),則實(shí)數(shù)A的取值范圍為(  )
A.$(-∞,\frac{9}{4}]$B.$[\frac{7}{4},+∞)$C.$[\frac{7}{4},\frac{9}{4}]$D.$(-∞,\frac{7}{4}]∪$$[\frac{9}{4},+∞)$

查看答案和解析>>

同步練習(xí)冊答案