10.在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下四個結(jié)論:
①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整數(shù)a,b屬于同一‘類’”的充要條件是“a-b∈[0]”.
其中,正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

分析 根據(jù)題中“類”的理解,在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個“類”,對于各個結(jié)論進(jìn)行分析:①∵2014÷5=402…4;②∵-3÷5=0…2,③整數(shù)集中的數(shù)被5除的數(shù)可以且只可以分成五類,故Z=[0]∪[1]∪[2]∪[3]∪[4];④從正反兩個方面考慮即可.

解答 解:①∵2014÷5=402…4,∴2014∈[4],故①對;
②∵-3=5×(-1)+2,∴對-3∉[3];故②錯;
③∵整數(shù)集中的數(shù)被5除的數(shù)可以且只可以分成五類,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③對;
④∵整數(shù)a,b屬于同一“類”,∴整數(shù)a,b被5除的余數(shù)相同,從而a-b被5除的余數(shù)為0,反之也成立,故“整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.故④對.
∴正確結(jié)論的個數(shù)是3.
故選:C.

點評 本題主要考查了選修3同余的性質(zhì),具有一定的創(chuàng)新,關(guān)鍵是對題中“類”的題解,屬于創(chuàng)新題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,△ABC中,O是BC的中點,AB=AC,AO=2OC=2.將△BAO沿AO折起,使B點與圖中B'點重合.
(1)求證:AO⊥平面B'OC;
(2)當(dāng)三棱錐B'-AOC的體積取最大時,求二面角A-B'C-O的余弦值;
(3)在(2)的條件下,試問在線段B'A上是否存在一點P,使CP與平面B'OA所成的角的正弦值為$\frac{{\sqrt{5}}}{3}$?證明你的結(jié)論,并求AP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow a$=(-3,2),$\overrightarrow b$=(2,1),$\overrightarrow c$=(3,-1),t∈R.
(Ⅰ)$\overrightarrow a$在$\overrightarrow b$+$\overrightarrow c$上的投影;   
(Ⅱ)若$\overrightarrow a$-t$\overrightarrow b$與$\overrightarrow c$共線,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知(1+sint)(1+cost)=$\frac{5}{4}$,則$\frac{1}{sint}$+$\frac{1}{cost}$的值為-$\frac{4}{3}$-$\frac{2\sqrt{10}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.用5種不同的顏色給如圖中所給出的四個區(qū)域涂色,每個區(qū)域涂一種顏色,若要求相鄰(有公共邊)的區(qū)域不同色,那么共有260種不同的涂色方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.把函數(shù)f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)的圖象沿x軸向左平移m個單位(m>0),所得函數(shù)為奇函數(shù),則m的最小值是(  )
A.$\frac{π}{2}$B.$\frac{3π}{8}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知:函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分圖象如圖所示:
(1)求函數(shù)f(x)的解析式;
(2)若g(x)的圖象是將f(x)的圖象先向右平移1個單位,然后縱坐標(biāo)不變橫坐標(biāo)縮短到原來的一半得到的,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若{1,2,3}⊆A⊆{1,2,3,4,5},則A={1,2,3}、{1,2,3,4}、{1,2,3,5}、{1,2,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.AB是過橢圓$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左焦點F傾斜角為$\frac{π}{3}$的弦,則AB的長為$\frac{16}{7}$.

查看答案和解析>>

同步練習(xí)冊答案