設(shè)向量
a
=(m,1),
b
=(2,-3),若滿足
a
b
,則m=
 
考點(diǎn):平行向量與共線向量,平面向量的坐標(biāo)運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量共線定理即可得出.
解答: 解:∵
a
b
,∴-3m-2=0,解得m=-
2
3

故答案為:-
2
3
點(diǎn)評(píng):本題考查了向量的共線定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosωx(sinωx-
3
cosωx),(ω>0,x∈R)的最小正周期為π.
(Ⅰ)求實(shí)數(shù)ω的值.
(Ⅱ)在△ABC中,角A、B、C對(duì)應(yīng)的邊分別為a、b、c,若f(
B
2
)=
2
-
6
-2
3
4
,|
AB
+
AC
|=|
AB
-
AC
|=8,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-a(x+1)在x=ln2處的切線的斜率為1.(e為無理數(shù),e=271828…)
(Ⅰ)求a的值及f(x)的最小值;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≥mx2,求m的取值范圍;
(Ⅲ)求證:
n
i=2
lni
i4
1
2e
(i,n∈N+).(參考數(shù)據(jù):ln2≈0.6931)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=1-i,z2=3-5i,則復(fù)平面上與z1,z2對(duì)應(yīng)的點(diǎn)Z1與Z2的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,b>0,若a+b=2,則
1
a-1
+
2
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二項(xiàng)式(
cosθ
x
-x)6的展開式中的常數(shù)項(xiàng)為20,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax+2y+6=0,直線l2:x+(a-1)y+a2-1=0.當(dāng)a
 
時(shí),l1與l2相交;當(dāng)a
 
時(shí),l1⊥l2;當(dāng)a
 
時(shí),l1與l2重合;當(dāng)a
 
時(shí),l1∥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(1,3,5)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=kx+1 與拋物線x2=4y 相交于A,B兩點(diǎn),且該拋物線過A,B兩點(diǎn)的切線交于C,點(diǎn)C的軌跡記為E,M,N是E上不同的兩點(diǎn),直線AM,BN都與y軸平行,則
FM
FN
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案