(選做題)在極坐標(biāo)系下,已知直線l的方程為ρcos(θ-)=,則點(diǎn)M(1,)到直線l的距離為   
【答案】分析:把直線l的極坐標(biāo)方程化為普通方程,再利用點(diǎn)到直線的距離公式求出M到直線l的距離
解答:解:直線l的極坐標(biāo)方程ρcos(θ-)=
即ρ(cosθ+sinθ)=
化為普通方程為x+y-1=0,
點(diǎn)M(1,)直角坐標(biāo)為(0,1)
根據(jù)點(diǎn)到直線的距離公式,M到直線l的距離d==
故答案為:
點(diǎn)評(píng):本題從極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化出發(fā),考查了點(diǎn)到直線的距離公式的應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.(不等式選講選做題)函數(shù)y=|x+1|+|x-1|的最小值是
 

B.(幾何證明選講選做題)如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針轉(zhuǎn)60°到OD,則PD的長為
 

C.(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,已知圓ρ=4cosθ的圓心為A,點(diǎn)B(6
2
,
4
)
,則線段AB的長為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題A、B、C三個(gè)選答題,請(qǐng)考生任選一題作答,如果多做,則按所做的第一題計(jì)分.
A.(不等式選講選做題)若不等式|x-1|+|x-m|<2m的解集為∅,則m的取值范圍為
(-∞,
1
3
]
(-∞,
1
3
]

B.(幾何證明選講選做題)如圖所示,已知AB和AC是圓的兩條弦,過點(diǎn)B作圓的切線與AC的延長線相交于點(diǎn)D.過點(diǎn)C作BD的平行線與圓相交于點(diǎn)E,與AB相交于點(diǎn)F,AF=3,F(xiàn)B=1,EF=
3
2
,則線段CD的長為
4
3
4
3

C.(極坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,ρ(2,
π
3
)的直角坐標(biāo)是
(1,
3
)
(1,
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)P(2,
2
)
到直線l:3ρcosθ-4ρsinθ=3的距離為
1
1
. 
B.(幾何證明選講選做題)已知PA是圓O的切線,切點(diǎn)為A,PA=2,AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=1,則圓O的半徑R的長為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,過點(diǎn)(2,
π3
)
作極軸的垂線,垂足為M,則M點(diǎn)的極坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案