18.方程x-1=$\sqrt{1{-y}^{2}}$表示的曲線是半圓.

分析 方程x-1=$\sqrt{1{-y}^{2}}$可化為(x-1)2+y2=1(x≥1),即可得出結(jié)論.

解答 解:方程x-1=$\sqrt{1{-y}^{2}}$可化為(x-1)2+y2=1(x≥1),
∴方程x-1=$\sqrt{1{-y}^{2}}$表示的曲線是一個半圓.
故答案為:半圓.

點評 本題考查曲線與方程,考查圓的方程,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.?dāng)?shù)列{an}是遞增的等差數(shù)列,已知a9=5,且a1,a3,a7成等比數(shù)列.
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{n{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)為偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=$\frac{1}{x}$B.y=-x2+1C.y=lg|x|D.y=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線l1:x+2y-1=0和l2:x-2ay-a=0,若l1∥l2,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將一個長方體沿相鄰三個面的對角線截去一個棱錐,得到的幾何體的正視圖與俯視圖如圖所示,則該幾何體的側(cè)(左)視圖為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a>b>1,若logab+logba=$\frac{5}{2}$,ab=ba,則a=4,b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知AB為圓O:(x-1)2+y2=1的直徑,點P為直線x-y+1=0上任意一點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圓,則圓心坐標是(-2,-4),半徑是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.小王的手機使用的是每月300M流量套餐,如圖記錄了小王在4月1日至4月10日這十天的流量使用情況,下列敘述中正確的是( 。
A.1日-10日這10天的平均流量小于9.0M/日
B.11日-30日這20天,如果每天的平均流量不超過11M,這個月總流量就不會超過套餐流量
C.從1日-10日這10天的流量中任選連續(xù)3天的流量,則3日,4日,5日這三天的流量的方差最大
D.從1日-10日這10天中的流量中任選連續(xù)3天的流量,則8日,9日,10日這三天的流量的方差最小

查看答案和解析>>

同步練習(xí)冊答案