【題目】在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),(),圓C的參數方程(θ為參數).
(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;
(Ⅱ)判斷直線l與圓C的位置關系.
【答案】見解析
【解析】
(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;(Ⅱ)求出圓的圓心與半徑,判斷圓心與直線的距離與半徑的關系,即可判斷直線l與圓C的位置關系.
解:(Ⅰ)M,N的極坐標分別為(2,0),(),
所以M、N的直角坐標分別為:M(2,0),N(0,),P為線段MN的中點(1,),
直線OP的平面直角坐標方程y;
(Ⅱ)圓C的參數方程(θ為參數).它的直角坐標方程為:(x﹣2)2+(y)2=4,
圓的圓心坐標為(2,),半徑為2,
直線l上兩點M,N的極坐標分別為(2,0),(),
方程為y(x﹣2)(x﹣2),即x+3y﹣20.
圓心到直線的距離為:2,
所以,直線l與圓C相交.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.為曲線上的動點,點在射線上,且滿足.
(Ⅰ)求點的軌跡的直角坐標方程;
(Ⅱ)設與軸交于點,過點且傾斜角為的直線與相交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點M、N分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,傾斜角為的直線的參數方程為(為參數).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)若直線與曲線交于,兩點,且,求直線的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線的焦點,是拋物線上一點,且.
(1)求拋物線的標準方程;
(2)過點的動直線交拋物線于兩點,拋物線上是否存在一個定點,使得以弦為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現將甲、乙兩個學生在高二的6次數學測試的成績(百分制)制成如圖所示的莖葉圖,進入高三后,由于改進了學習方法,甲、乙這兩個學生的考試成績預計同時有了大的提升:若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應的考試成績預計為.
(1)試預測:高三6次測試后,甲、乙兩個學生的平均成績分別為多少?誰的成績更穩(wěn)定?
(2)若已知甲、乙兩個學生的高二6次考試成績分別由低到高進步的,定義為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值,求的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等差數列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項公式;
(2)求數列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他門各應償還多少?該問題中,1斗為10升,則羊主人應償還多少升粟?( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com