分析 (1)消去參數(shù)t得直線l的普通方程,利用極坐標與直角坐標互化方法求曲線C的直角坐標方程;
(2)求出M,P的直角坐標,即可求|PM|的值.
解答 解:(1)因為直線的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),
消去參數(shù)t得直線l的普通方程為x-y+3=0…(2分)
由曲線C的極坐標方程ρcos2θ=2sinθ,
得ρ2cos2θ=2ρsinθ,…(3分)
所以曲線C的直角坐標方程為x2=2y.…(5分)
(2)由$\left\{\begin{array}{l}y=x+3\\{x^2}=2y\end{array}\right.$,消去y得x2-2x-6=0…(6分)
設A(x1,y1),B(x2,y2),則AB的中點$M(\frac{{{x_1}+{x_2}}}{2},\frac{{{y_1}+{y_2}}}{2})$.
因為 x1+x2=2,∴M(1,4)…(8分)
又點P的直角坐標為(1,1),…(9分)
所以$|{PM}|=\sqrt{{{(1-1)}^2}+{{(4-1)}^2}}=3$…(10分)
點評 本題考查了直角坐標方程化為參數(shù)方程、極坐標方程化為直角坐標方程、直線與拋物線的位置關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com