20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}2x+y≤2\\ x+y≥-1\\ y≤x\end{array}\right.$,則目標(biāo)函數(shù)z=2x-y的最大值為10.

分析 先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,z=2x-y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最小值即可.

解答 解:約束條件$\left\{\begin{array}{l}2x+y≤2\\ x+y≥-1\\ y≤x\end{array}\right.$,不等式組表示的平面區(qū)域如圖所示,
當(dāng)直線z=2x-y過(guò)點(diǎn)A時(shí),z取得最大值,
由$\left\{\begin{array}{l}{2x+y=2}\\{x+y=-1}\end{array}\right.$,可得A(3,-4)時(shí),
在y軸上截距最小,此時(shí)z取得最大值10.
故答案為:10.

點(diǎn)評(píng) 本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則數(shù)列{log2an}的前10項(xiàng)和等于(  )
A.1023B.55C.45D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期為π,若其圖象向左平移$\frac{π}{3}$個(gè)單位后關(guān)于y軸對(duì)稱,則( 。
A.$ω=2,ϕ=\frac{π}{3}$B.$ω=2,ϕ=\frac{π}{6}$C.$ω=4,ϕ=\frac{π}{6}$D.$ω=2,ϕ=-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.韓國(guó)民意調(diào)查機(jī)構(gòu)“蓋洛普韓國(guó)”2016年11月公布的民調(diào)結(jié)果顯示,受“閨蜜門(mén)”時(shí)間影響,韓國(guó)總統(tǒng)樸槿惠的民意支持率持續(xù)下跌,在所調(diào)查的1000個(gè)對(duì)象中,年齡在[20,30)的群體有200人,支持率為0%,年齡在[30,40)和[40,50)的群體中,支持率均為3%;年齡在[50,60)和[60,70)的群體中,支持率分別為6%和13%,若在調(diào)查的對(duì)象中,除[20,30)的群體外,其余各年齡層的人數(shù)分布情況如頻率分布直方圖所示,其中最后三組的頻數(shù)構(gòu)成公差為100的等差數(shù)列.
(1)依頻率分布直方圖求出圖中各年齡層的人數(shù)
(2)請(qǐng)依上述支持率完成下表:
                 年齡分布
是否支持
[30,40)和[40,50)[50,60)和[60,70) 合計(jì)
 支持152540
 不支持485275760
 合計(jì)500 300 800 
根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為年齡與支持率有關(guān)?
附表:
 P(K2≥k) 0.150.10  0.05 0.0250.010 0.005 0.001 
 k 2.0722.076 3.841 5.024 6.635 7.879 10.828 
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d    參考數(shù)據(jù):125×33=15×275,125×97=25×485)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+b,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f[f($\frac{1}{2}$)]=3,則b=( 。
A.-1B.0C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P是銳角△ABC所在平面內(nèi)的動(dòng)點(diǎn),且滿足$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,給出下列四個(gè)命題:
①點(diǎn)P的軌跡是一條直線;
②$|\overrightarrow{CP}|=|\overrightarrow{CA}|$恒成立;
③$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④存在點(diǎn)P使得$|\overrightarrow{PC}+\overrightarrow{PB}|=|\overrightarrow{CB}|$.
則其中真命題的序號(hào)為(  )
A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),且當(dāng)x<0時(shí)xf'(x)+f(x)<0,記a=3f(3),b=f(sin1)sin1,c=-2$\sqrt{2}f(-2\sqrt{2})$,則a,b,c的大小關(guān)系式( 。
A.a>c>bB.c>a>bC.c>b>aD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的$\sqrt{2}$倍,點(diǎn)P在側(cè)棱SD上,且SP=3PD.
(1)求證:AC⊥SD;
(2)若$AB=\sqrt{2}$,求三棱錐D-ACP的體積;
(3)側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC,若存在,求$\frac{SE}{EC}$的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知a∈R,則“a>3”是“a2>2a+3”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案