16.在銳角三角形中,角A,B,C對邊分別為a,b,c,若3($\frac{sinB}{sinA}$+$\frac{sinA}{sinB}$)=8cosC,則$\frac{{a}^{2}+^{2}}{{c}^{2}}$=4.

分析 由已知及正弦定理可得3($\frac{a}+\frac{a}$)=8cosC,結(jié)合余弦定理可得4c2=a2+b2,化簡所求即可計(jì)算得解.

解答 解:∵3($\frac{sinB}{sinA}$+$\frac{sinA}{sinB}$)=8cosC,
∴由正弦定理可得:3($\frac{a}+\frac{a}$)=8cosC,
∴由余弦定理可得:$\frac{3{a}^{2}+3^{2}}{ab}$=8×$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,整理可得:4c2=a2+b2
∴$\frac{{a}^{2}+^{2}}{{c}^{2}}$=$\frac{4{c}^{2}}{{c}^{2}}$=4.
故答案為:4.

點(diǎn)評 本題主要考查了正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2f(x-2),x∈(1,+∞)}\\{1-|x|,x∈[-1,1]}\end{array}\right.$,若關(guān)于x的方程f(x)-loga(x+1)=0(a>0且a≠1)在區(qū)間[0,5]內(nèi)恰有5個(gè)不同的根,則實(shí)數(shù)a的取值范圍是(  )
A.(1,$\sqrt{3}$)B.($\root{4}{5}$,+∞)C.($\sqrt{3}$,+∞)D.($\root{4}{5}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個(gè)半徑大于2的扇形,其周長C=10,面積S=6,則這個(gè)扇形的半徑r=3,圓心角α的弧度數(shù)為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線$\frac{y^2}{5}-\frac{x^2}{m}=1$的離心率e∈(1,2),若命題“p∨q為真,命題“p∧q”為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an},{bn},{cn}滿足:a1=3,當(dāng)n≥2時(shí),an-an-1=4n;對于任意的正整數(shù)n,c1+2c2+…+2n-1cn=nan,bn=6an-2ncn,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn
(I)求數(shù)列{cn}的通項(xiàng)公式;
(II)求滿足Sn<220的正整數(shù)n的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(diǎn)A(1,0)和圓B:(x+1)2+y2=64,P是圓上任一點(diǎn),求線段AP的垂直平分線l與線段PB的交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.海事救護(hù)船A在基地的北偏東60°,與基地相距$100\sqrt{3}$海里,漁船B被困海面,已知B距離基地100海里,而且在救護(hù)船A正西方,則漁船B與救護(hù)船A的距離是200海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出定義:若$m-\frac{1}{2}<x≤m+\frac{1}{2}$(m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m.下列關(guān)于函數(shù)f(x)=|x-{x}|的四個(gè)結(jié)論:
①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)?[0,\frac{1}{2}]$;
②函數(shù)y=f(x)的圖象關(guān)于直線$x=\frac{k}{2}(k∈Z)$對稱;
③函數(shù)y=f(x)在$[-\frac{1}{2},\frac{1}{2}]$上是增函數(shù);
④對任意實(shí)數(shù)x,都有f(-x)=f(x)
其中正確結(jié)論的序號是(  )
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sinα=-$\frac{3}{5}$,且α是第三象限角,則cosα=( 。
A.-$\frac{2}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案