【題目】設(shè)為兩條不同的直線,為三個(gè)不同的平面,則下列命題正確的是(

A.,,則B.,,則

C.,,則是異面直線D.,,則

【答案】B

【解析】

A:根據(jù)直線與平面平行的性質(zhì),結(jié)合直線與直線的位置關(guān)系進(jìn)行判斷即可;

B:根據(jù)線面垂直的定義進(jìn)行判斷即可;

C:根據(jù)異面直線的定義進(jìn)行判斷即可;

D:根據(jù)正方體模型進(jìn)行判斷即可.

A:因?yàn)?/span>,所以直線與平面沒(méi)有公共點(diǎn),又因?yàn)?/span>,所以直線與直線沒(méi)有公共點(diǎn),故直線與直線的位置關(guān)系為異面或平行,故本命題是假命題;

B:因?yàn)?/span>,所以直線與平面內(nèi)任意一條直線都垂直,而,所以直線與直線互相垂直,即,故本命題是真命題;

C:因?yàn)?/span>,所以直線與直線的位置關(guān)系為平行、相交、異面,故本命題是假命題;

D:如下圖的正方體中:設(shè)平面為平面,平面為平面,平面為平面,顯然有,,但是不成立,,故本結(jié)論是假命題.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的“十八大”之后,做好農(nóng)業(yè)農(nóng)村工作具有特殊重要的意義.國(guó)家為了更 好地服務(wù)于農(nóng)民、開(kāi)展社會(huì)主義新農(nóng)村工作,派調(diào)查組到農(nóng)村某地區(qū)考察.該地區(qū)有100戶農(nóng) 民,且都從事蔬菜種植.據(jù)了解,平均每戶的年收入為6萬(wàn)元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),當(dāng)?shù)卣疀Q 定動(dòng)員部分農(nóng)民從事蔬菜加工.據(jù)統(tǒng)計(jì),若動(dòng)員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù) 從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高,而從事蔬菜加工的農(nóng)民平均每戶的年收入為萬(wàn)元.

(1)在動(dòng)員戶農(nóng)民從事蔬菜加工后,要使剩下戶從事蔬菜種植的所有農(nóng)民總年收 入不低于動(dòng)員前100戶從事蔬菜種植的所有農(nóng)民年總年收入,求的取值范圍;

(2)在(1)的條件下,要使這戶農(nóng)民從事蔬菜加工的總年收入始終不高于戶從事蔬菜種植的所有農(nóng)民年總年收入,求的最大值.(參考數(shù)據(jù):)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的說(shuō)法,錯(cuò)誤的是(

A.展開(kāi)式中的二項(xiàng)式系數(shù)之和為1024

B.展開(kāi)式中第6項(xiàng)的二項(xiàng)式系數(shù)最大

C.展開(kāi)式中第5項(xiàng)和第7項(xiàng)的二項(xiàng)式系數(shù)最大

D.展開(kāi)式中第6項(xiàng)的系數(shù)最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】研究表明某地的山高 ()與該山的年平均氣溫 ()具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說(shuō)法錯(cuò)誤的是(

A.年平均氣溫為時(shí)該山高估計(jì)為

B.該山高為處的年平均氣溫估計(jì)為

C.該地的山高與該山的年平均氣溫的正負(fù)相關(guān)性與回歸直線的斜率的估計(jì)值有關(guān)

D.該地的山高與該山的年平均氣溫成負(fù)相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比為正數(shù)的等比數(shù)列,首項(xiàng),前n項(xiàng)和為,且,,成等差數(shù)列.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:過(guò)點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若過(guò)原點(diǎn)的直線與橢圓C交于P、Q兩點(diǎn),且在直線上存在點(diǎn)M,使得為等邊三角形,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1當(dāng)時(shí),設(shè).討論函數(shù)的單調(diào)性;

2證明當(dāng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓的短軸長(zhǎng)為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設(shè)點(diǎn)的中點(diǎn),射線為原點(diǎn))與橢圓交于點(diǎn),滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案