如圖,在直三棱柱ABC―A1B1Cl中,∠ACB=90°,CB=1,CA=,AA1=,M是側(cè)棱CC1上一點(diǎn),AM⊥BA1

(1)求證:AM⊥平面A1BC;

(2)求二面角B―AM―C的大;

(3)求點(diǎn)C到平面ABM的距離.

解:(1)在三棱柱ABC―A1B1C1中,易知平面ACC1A1⊥平面ABC,因?yàn)椤螦CB=90°,

且AM平面ACC1A1,所以BC⊥AM,因?yàn)锳M⊥BA1,且BC∩BA1=B,

所以AM⊥平面A1BC.

(2)設(shè)AM與A1C的交點(diǎn)為O,連接BO,如圖所示.由(1)AM⊥OB,且AM⊥OC,

所以∠BOC為二面角B―AM―C的平面角,

    在Rt△ACM和Rt△AlAC中,

    ∠MAC+∠ACO=90°,∠AAlC+∠ACO=90°,

    ∴∠AAlC=∠MAC,

    所以Rt△ACM∽R(shí)t△AlAC,

    所以AC2=MC?AAl,所以MC=,

    所以在Rt△ACM中,AM=

    因?yàn)?sub>AC?MC=AM?CO,所以CO=1,

    所以在Rt△BCO中,tan∠BOC=1,

    所以∠BOC=45°,故所求二面角的大小為45°.

    (3)設(shè)點(diǎn)C到平面ABM的距離為h,易知BO=

    可知SABM=AM?BO=,

因?yàn)閂C―ABM=VM―ABC,所以SABM=MC?SABC,

所以點(diǎn)C到平面ABM的距離為.(也可以建立空間直角坐標(biāo)系來解決)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案