如果實數(shù)x,y滿足
x≥0
y≥0
2x+y≤2
,對任意的正數(shù)a,b,不等式ax+by≤1恒成立,則a+b的取值范圍是(  )
A、(0,
3
2
]
B、(0,4]
C、[
3
2
,+∞)
D、(0,2)
分析:畫出不等式組表示的平面區(qū)域,判斷出區(qū)域的形狀,求出a,b的范圍,進一步求出a+b的范圍.
解答:精英家教網解:畫出不等式組表示的平面區(qū)域
由題意.x,y所形成區(qū)域是由(0,0).(1,0).(0,2)三點圍成的三角形.
因以為ax+by≤1恒成立所以a≤1.b≤
1
2
.所以a+b≤
3
2
;
所以a+b的取值范圍是(0,
3
2
]
故選A
點評:利用線性規(guī)劃求函數(shù)的最值,關鍵是畫出不等式組表示的平面區(qū)域,給函數(shù)賦予幾何意義.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x,y滿足
x+2y≤1
x≥0
y≥0
,則
4x+2y-16
x-3
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x、y滿足(x-2)2+y2=3,則
y
x
的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•武漢模擬)如果實數(shù)x、y滿足
x-4y+3≤0
3x+5y-25≤0
x≥1
,目標函數(shù)z=kx+y的最大值為12,最小值3,那么實數(shù)k的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x,y滿足
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,則z=|x+2y+4|的最大值
29
29

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•天津模擬)如果實數(shù)x、y滿足
x-4y+3≤0
3x+5y-25≤0
x≥1
,目標函數(shù)z=kx+y的最大值為12,最小值3,那么實數(shù)k的值為
2
2

查看答案和解析>>

同步練習冊答案