【題目】已知函數(shù) .
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;(直接畫圖,不需列表)
(2)寫出f(x)的單調(diào)遞增區(qū)間及值域.
【答案】
(1)解:圖象如下圖所示
(2)解:由圖可知f(x)的單調(diào)遞增區(qū)間[﹣1,0],[2,5],
值域為[﹣1,3]
【解析】(1)利用函數(shù)的解析式直接求出函數(shù)的圖象;(2)通過函數(shù)的圖象直接寫出函數(shù)的單調(diào)區(qū)間以及函數(shù)的值域.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的值域和函數(shù)圖象的作法的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的;圖象的作法與平移:①據(jù)函數(shù)表達(dá)式,列表、描點、連光滑曲線;②利用熟知函數(shù)的圖象的平移、翻轉(zhuǎn)、伸縮變換;③利用反函數(shù)的圖象與對稱性描繪函數(shù)圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓錐曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點P(2,3),傾斜角為 .
(1)寫出直線l的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與圓相交于A,B兩點,求|PA|·|PB|的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: 的離心率為, 、為橢圓的左右頂點,焦點到短軸端點的距離為2, 、為橢圓上異于、的兩點,且直線的斜率等于直線斜率的2倍.
(Ⅰ)求證:直線與直線的斜率乘積為定值;
(Ⅱ)求三角形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)有A、B、C三個不同的校區(qū),其中A校區(qū)有4000人,B校區(qū)有3000人,C校區(qū)有2000人,采用按校區(qū)分層抽樣的方法,從中抽取900人參加一項活動,則A、B、C校區(qū)分別抽取( )
A.400人、300人、200人
B.350人、300人、250人
C.250人、300人、350人
D.200人、300人、400人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,焦距為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線: 交橢圓于兩點, 是橢圓上一點,直線的斜率為,且, 是線段延長線上一點,且, 的半徑為, 是的兩條切線,切點分別為.求的最大值,并求取得最大值時直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義域為R的函數(shù) (a,b為實數(shù)).
(1)若f(x)是奇函數(shù),求a,b的值;
(2)當(dāng)f(x)是奇函數(shù)時,證明對任何實數(shù)x,c都有f(x)<c2﹣3c+3成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且a≠1,函數(shù)f(x)=loga .
(1)求f(x)的定義域D及其零點;
(2)設(shè)g(x)=mx2﹣2mx+3,當(dāng)a>1時,若對任意x1∈(﹣∞,﹣1],存在x2∈[3,4],使得f(x1)≤g(x2),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣x3+3x+2分別在x1、x2處取得極小值、極大值.xOy平面上點A、B的坐標(biāo)分別為(x1 , f(x1))、(x2 , f(x2)),該平面上動點P滿足 =4.求:
(1)求點A、B的坐標(biāo);
(2)求動點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],下列命題中正確命題的序號 .
①函數(shù)f(x)的最大值為1;
②函數(shù)f(x)的最小值為0;
③方程f(x)﹣ =0有無數(shù)個解;
④函數(shù)f(x)是增函數(shù);
⑤對任意的x∈R,函數(shù)f(x)滿足f(x+1)=f(x);
⑥函數(shù)f(x)的圖象與函數(shù)g(x)=|lgx|的圖象的交點個數(shù)為10個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com