右圖為一組合體,其底面為正方形,平面,,且
(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.
(1)證明過程詳見解析;(2)2;(3).
解析試題分析:本題主要考查線線垂直、平行的判定、線面垂直的判定、幾何體的體積和表面積的計(jì)算,考查空間想象能力、推理論證能力和運(yùn)算能力.第一問,利用線面平行的判定得出平面,平面,所以可得到平面平面,所以利用面面平行的性質(zhì)得證結(jié)論;第二問,利用線面垂直得到線線垂直,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/c/11eeb3.png" style="vertical-align:middle;" />,所以得到線面垂直,所以是所求錐體的高,利用梯形面積公式求底面的面積,再利用體積公式求體積;第三問,利用已知的邊的關(guān)系和長(zhǎng)度,可以求出組合體中每一條邊的長(zhǎng)度,從而求出每一個(gè)面的面積,最后求和加在一起即可.
試題解析:(Ⅰ)∵,平面,平面,
∴平面,
同理可證:平面,
∵平面,平面,且,
∴平面平面,
又∵平面,∴平面,
(Ⅱ)∵平面,平面,
∴,
∵,
∴平面,
∵,
∴四棱錐的體積,
(Ⅲ)∵,,
∴,
又∵,,,,,
∴組合體的表面積為.
考點(diǎn):1.線面平行的判定;2.面面平行的判定;3.梯形面積公式;4.錐體體積公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點(diǎn)是棱的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,△BCD內(nèi)接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三邊將△A1BD、△A2BC、△A3CD翻折上去,恰好形成一個(gè)三棱錐ABCD,如圖②.
(1)求證:AB⊥CD;
(2)求直線BD和平面ACD所成的角的正切值;
(3)求四面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成角的大。
(2)若該直三棱柱ABC-A1B1C1的體積為,求點(diǎn)A到平面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖是一個(gè)斜三棱柱,已知、平面平面、、,又、分別是、的中點(diǎn).
(1)求證:∥平面; (2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體中,為中點(diǎn).
(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由;
(3)若二面角的大小為,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com