若雙曲線C:x2-y2=1的右頂點(diǎn)為A,過(guò)A的直線l與雙曲線C的兩條漸近線交于P,Q兩點(diǎn),且
PA
=2
AQ
,則直線l的斜率為
±3
±3
分析:設(shè)l的方程為x=my+1,代入雙曲線方程,利用韋達(dá)定理,結(jié)合向量知識(shí),即可得到結(jié)論.
解答:解:雙曲線的右頂點(diǎn)A(1,0),設(shè)l的方程為x=my+1,代入雙曲線方程,可得(m2-1)y2+2my+1=0
設(shè)點(diǎn)P(x1,y1),Q(x2,y2),則y1+y2=
2m
1-m2
①,y1y2=
1
m2-1

PA
=2
AQ
,
∴y1=-2y2③,
由①②③可得m=±
1
3

∴直線l的斜率為±3
故答案為:±3.
點(diǎn)評(píng):本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①用“輾轉(zhuǎn)相除法”求得243,135 的最大公約數(shù)是9;
②命題p:?x∈R,x2-x+
1
4
<0
,則?p是?x0∈R,x02-x0+
1
4
≥0
;
③已知條件p:x>1,y>1,條件q:x+y>2,xy>1,則條件p是條件q成立的充分不必要條件;
④若
a
=(1,0,1),
b
=(-1,1,0)
,則
a
,
b
>=
π
2

⑤已知f(n)=
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
,則f(n)中共有n2-n+1項(xiàng),當(dāng)n=2時(shí),f(2)=
1
2
+
1
3
+
1
4
;
⑥直線l:y=kx+1與雙曲線C:x2-y2=1的左支有且僅有一個(gè)公共點(diǎn),則k的取值范圍是-1<k<1或k=
2

其中正確的命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:x2-y2=1,l:y=kx+1
(1)求直線L的斜率的取值范圍,使L與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒(méi)有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在,若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C:x2-y2=1的漸近線方程為
x±y=0
x±y=0
;若雙曲線C的右頂點(diǎn)為A,過(guò)A的直線l與雙曲線C的兩條漸近線交于P,Q兩點(diǎn),且
PA
=2
AQ
,則直線l的斜率為
±3
±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一條曲線C在y軸右邊,C上任意一點(diǎn)到點(diǎn)F1(2,0)的距離減去它到y(tǒng)軸距離的差都是2.
(1)求曲線C的方程;
(2)若雙曲線M:x2-
y2
t
=1(t>0)的一個(gè)焦點(diǎn)為F1,另一個(gè)焦點(diǎn)為2,過(guò)F2的直線l與M相交于A、B兩點(diǎn),直線l的法向量為
n
=(k,-1)(k>0),且
OA
OB
=0,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知雙曲線C:和圓O:x2+y2=b2(其中原點(diǎn)O為圓心),過(guò)雙曲線C上一點(diǎn)P(x,y)引圓O的兩條切線,切點(diǎn)分別為A、B.
(1)若雙曲線C上存在點(diǎn)P,使得∠APB=90°,求雙曲線離心率e的取值范圍;
(2)求直線AB的方程;
(3)求三角形OAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案