10.△ABC的兩個(gè)頂點(diǎn)為A(-1,0),B(1,0),△ABC周長(zhǎng)為6,則C點(diǎn)軌跡為以A,B為焦點(diǎn)的橢圓(除去橢圓與x軸的交點(diǎn)),方程為$\frac{x^2}{4}+\frac{y^2}{3}=1({y≠0})$.

分析 根據(jù)三角形的周長(zhǎng)和定點(diǎn),得到點(diǎn)A到兩個(gè)定點(diǎn)的距離之和等于定值,得到點(diǎn)C的軌跡是橢圓,橢圓的焦點(diǎn)在x軸上,寫出橢圓的方程,去掉不合題意的點(diǎn).

解答 解:∵△ABC的兩頂點(diǎn)A(-1,0),B(1,0),△ABC周長(zhǎng)為6,
∴AB=2,BC+AC=4,
∵4>2,∴點(diǎn)C到兩個(gè)定點(diǎn)的距離之和等于定值,點(diǎn)C滿足橢圓的定義,
∴點(diǎn)C的軌跡是以A,B為焦點(diǎn)的橢圓(除去橢圓與x軸的交點(diǎn)),
∴2a=4,2c=2,∴a=2,c=1,b=$\sqrt{3}$,
∴橢圓的標(biāo)準(zhǔn)方程是$\frac{x^2}{4}+\frac{y^2}{3}=1({y≠0})$,
故答案為以A,B為焦點(diǎn)的橢圓(除去橢圓與x軸的交點(diǎn)),方程為$\frac{x^2}{4}+\frac{y^2}{3}=1({y≠0})$.

點(diǎn)評(píng) 本題考查軌跡方程的求法,注意橢圓的定義的應(yīng)用是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某單位要在800名員工中抽去80名員工調(diào)查職工身體健康狀況,其中青年員工400名,中年員工300名,老年員工100名,下列說(shuō)法錯(cuò)誤的是(  )
A.老年人應(yīng)作為重點(diǎn)調(diào)查對(duì)象,故抽取的老年人應(yīng)超過(guò)40名
B.每個(gè)人被抽到的概率相同為$\frac{1}{10}$
C.應(yīng)使用分層抽樣抽取樣本調(diào)查
D.抽出的樣本能在一定程度上反映總體的健康狀況

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且“P(ξ>a)=P(ξ<a)”,則關(guān)于x的二項(xiàng)式(x2-$\frac{a}{x}$)3的展開(kāi)式的常數(shù)項(xiàng)為( 。
A.2B.-2C.12D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.有各不相同的5紅球、3黃球、2白球,事件A:從紅球和黃球中各選1球,事件B:從所有球中選取2球,則事件A發(fā)生是事件B發(fā)生的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3})+cos2x+a$,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)$x∈[-\frac{π}{4},\frac{π}{4}]$時(shí),恒有f(x)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC的三邊分別為a,b,c,a2=b2+c2-bc,則A等于( 。
A.30°B.60°C.75°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≥x\\ x+y≤2\\ x≥a.\end{array}\right.$且目標(biāo)函數(shù)z=2x-y的最大值是最小值的2倍,則a的值是(  )
A.$\frac{1}{2}$B.4C.3D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,已知E,F(xiàn)分別是正方形ABCD的邊AB、CD的中點(diǎn),現(xiàn)將正方形沿EF折成60°的二面角,則異面角直線AE與BF所成角的余弦值是$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$\frac{sinα+cosα}{sinα-2cosα}$=2.
(1)求tanα;
(2)求cos($\frac{π}{2}$-α)•cos(-π+α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案