精英家教網 > 高中數學 > 題目詳情
已知定義域為R的函數f(x)滿足f(4-x)=-f(x),當x<2時,f(x)單調遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。
分析:由x1+x2>4且(x1-2)(x2-2)<0,不妨設x1<2,x2>2,則2>x1>4-x2,利用當x<2時,f(x)單調遞減,函數y=f(x)滿足f(4-x)=-f(x),可得f(x1)<-f(x2),從而可得結論.
解答:解:由x1+x2>4且(x1-2)(x2-2)<0
不妨設x1<2,x2>2,則2>x1>4-x2,
∵當x<2時,f(x)單調遞減,
∴f(x1)<f(4-x2
∵函數y=f(x)滿足f(4-x)=-f(x),
∴f(x1)<-f(x2
∴f(x1)+f(x2)的值恒小于0,
故選D.
點評:本題考查函數的單調性,考查恒成立問題,正確運用函數的單調性是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數f(x)在(1,+∞)上為減函數,且函數y=f(x+1)為偶函數,則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)在(4,+∞)上為減函數,且函數y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)=
-2x+a2x+1
是奇函數
(1)求a值;
(2)判斷并證明該函數在定義域R上的單調性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數k的取值范圍;
(4)設關于x的函數F(x)=f(4x-b)+f(-2x+1)有零點,求實數b的取值范圍.

查看答案和解析>>

同步練習冊答案