數(shù)列中,,,數(shù)列是公比為)的等比數(shù)列。
(Ⅰ)求使成立的的取值范圍;(Ⅱ)求數(shù)列的前項(xiàng)的和
(Ⅰ)      (Ⅱ)

【錯(cuò)解分析】對(duì)于等比數(shù)列的前n項(xiàng)和易忽略公比q=1的特殊情況,造成概念性錯(cuò)誤。再者學(xué)生沒(méi)有從定義出發(fā)研究條件數(shù)列是公比為)的等比數(shù)列得到數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)成等比數(shù)列而找不到解題突破口。使思維受阻。
【正解】解:(I)∵數(shù)列是公比為的等比數(shù)列,∴,由,即),解得
(II)由數(shù)列是公比為的等比數(shù)列,得,這表明數(shù)列的所有奇數(shù)項(xiàng)成等比數(shù)列,所有偶數(shù)項(xiàng)成等比數(shù)列,且公比都是,又,,∴當(dāng)時(shí),
,
當(dāng)時(shí),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)數(shù)列只有21項(xiàng),首項(xiàng)為,末項(xiàng)為,其中任意連續(xù)三項(xiàng)a,bc滿(mǎn)足b,則此數(shù)列的第15項(xiàng)是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)已知等比數(shù)列中,分別是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),且公比
(1)求數(shù)列的通項(xiàng)公式;
(2)已知數(shù)列滿(mǎn)足:的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知三個(gè)數(shù)成等比數(shù)列,則公比_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足:
(1)求證:數(shù)列為等比數(shù)列;
(2)求證:數(shù)列為遞增數(shù)列;
(3)若當(dāng)且僅當(dāng)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
在數(shù)之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這個(gè)數(shù)的乘積記為,令,N.
(1)求數(shù)列的前項(xiàng)和;
(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)
已知數(shù)列滿(mǎn)足,
(1)求證:數(shù)列為等比數(shù)列  (2)求數(shù)列的通項(xiàng)公式
(3)試問(wèn):數(shù)列中是否存在不同的三項(xiàng)恰好成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等比數(shù)列的公比為正數(shù),且,則 (    )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等比數(shù)列滿(mǎn)足,且,且當(dāng)時(shí),
(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案