【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)證明: + +…+ < .
【答案】
(1)證明: =3,
∵ ≠0,
∴數(shù)列{an+ }是以首項(xiàng)為 ,公比為3的等比數(shù)列;
∴an+ = = ,即 ;
(2)證明:由(1)知 ,
當(dāng)n≥2時(shí),∵3n﹣1>3n﹣3n﹣1,∴ < = ,
∴當(dāng)n=1時(shí), 成立,
當(dāng)n≥2時(shí), + +…+ <1+ …+ = = < .
∴對(duì)n∈N+時(shí), + +…+ < .
【解析】(1)根據(jù)等比數(shù)列的定義,后一項(xiàng)與前一項(xiàng)的比是常數(shù),即 =常數(shù),又首項(xiàng)不為0,所以為等比數(shù)列;再根據(jù)等比數(shù)列的通項(xiàng)化式,求出{an}的通項(xiàng)公式;(2)將 進(jìn)行放大,即將分母縮小,使得構(gòu)成一個(gè)等比數(shù)列,從而求和,證明不等式.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系),還要掌握等比數(shù)列的基本性質(zhì)({an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對(duì)應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx﹣2與x軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1),當(dāng)m變化時(shí),解答下列問(wèn)題:(12分)
(1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由;
(2)證明過(guò)A、B、C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)貨卡車(chē)以每小時(shí)x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車(chē)總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車(chē)的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 則稱(chēng){an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無(wú)窮數(shù)列{bn}是等差數(shù)列,無(wú)窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn , 判斷{an}是否具有性質(zhì)P,并說(shuō)明理由;
(3)設(shè){bn}是無(wú)窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對(duì)任意a1 , {an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于向量a,b,e及實(shí)數(shù)x,y,x1,x2,,給出下列四個(gè)條件:
①且; ②
③且唯一; ④
其中能使a與b共線的是 ( )
A.①②
B.②④
C.①③
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),在時(shí)取得極值.
(1)求f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.
(個(gè)) | 2 | 3 | 4 | 5 | 6 |
(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分店時(shí),才能使區(qū)平均每個(gè)店的年利潤(rùn)最大?
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,2012年春節(jié),攝影愛(ài)好者在某公園處,發(fā)現(xiàn)正前方處有一立柱,測(cè)得立柱頂端的仰角和立柱底部的俯角均為,設(shè)的眼睛距地面的距離米.
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長(zhǎng)2米的彩桿繞其中點(diǎn)在與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者是否都可以將彩桿全部攝入畫(huà)面?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com