已知函數(shù)
(
為常數(shù))在
和
處取得極值,
(1)求函數(shù)
的解析式;
(2)當
時,
的圖像恒在直線
的下方,求實數(shù)
的取值范圍.
(1)
(2)
.
(1)由題意可知
是方程
的兩個根.
(2)本題的實質是
,即
恒成立,然后構造函數(shù)
,求其在
上的最大值即可
(1)
.由題設知
,解得
.所以
.
(2)有題設知
,即
,設
,
,所以
只要大于
的最大值即可.
,
當
時,
,所以
,所以
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
滿足
且對于任意
, 恒有
成立
(1)求實數(shù)
的值; (2)解不等式
(3)當
時,函數(shù)
是單調函數(shù),求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
(理)(1)證明不等式:
(2)已知函數(shù)
在
上單調遞增,求實數(shù)
的取值范圍.
(3)若關于x的不等式
在
上恒成立,求實數(shù)
的最大值.
(文)已知函數(shù)
的導函數(shù)的圖象關于直線x=2對稱.
(Ⅰ)求b的值;
(Ⅱ)若
在
處取得極小值,記此極小值為
,求
的定義域和值域.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為正實數(shù),
為自然數(shù),拋物線
與
軸正半軸相交于點
,設
為該拋物線在點
處的切線在
軸上的截距。
(1)用
和
表示
;
(2)求對所有
都有
成立的
的最小值;
(3)當
時,比較
與
的大小,并說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
、函數(shù)
的單調遞增區(qū)間為_______________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)已知
是函數(shù)
的一個極值點.
(Ⅰ)求
;
(Ⅱ)求函數(shù)
的單調區(qū)間;
(Ⅲ)若直線
與函數(shù)
的圖象有3個交點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當
時,求函數(shù)
的最小值;
(2)若
在
上單調遞增,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
求函數(shù)
的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知函數(shù)
,
(1)若
是
的極值點,求
值;
(2)若函數(shù)
在
上是增函數(shù),求實數(shù)
的取值范圍;
查看答案和解析>>