【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)概率不超過(guò)0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

附:,其中.

臨界值表

0.10

0.05

0.025

2.706

3.841

5.024

2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

【答案】1)填表見(jiàn)解析;能在犯錯(cuò)概率不超過(guò)0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”(2)詳見(jiàn)解析

【解析】

1)先由統(tǒng)計(jì)數(shù)據(jù)可得列聯(lián)表,再由列聯(lián)表求出的觀測(cè)值,然后結(jié)合臨界值表即可得解;

2)先確定的可能取值,再求對(duì)應(yīng)的概率,列出分布列,然后求出其期望即可得解.

解:(1)由統(tǒng)計(jì)數(shù)據(jù)可得列聯(lián)表為:

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

9

16

25

成績(jī)不優(yōu)良

11

4

15

總計(jì)

20

20

40

根據(jù)列聯(lián)表中的數(shù)據(jù),得的觀測(cè)值為

∴在犯錯(cuò)概率不超過(guò)0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”.

2)由表可知在8人中成績(jī)不優(yōu)良的人數(shù)為,則的可能取值為0,12,3.

;;

.

的分布列為

0

1

2

3

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

Ⅱ.當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

Ⅲ.將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱(chēng),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是

A. 56 B. 60 C. 120 D. 140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在四面體中,是邊長(zhǎng)為2的等邊三角形,為直角三角形,其中為直角頂點(diǎn),.分別是線段上的動(dòng)點(diǎn),且四邊形為平行四邊形.

1)求證:平面平面;

2)試探究當(dāng)二面角增加到90°的過(guò)程中,線段在平面上的投影所掃過(guò)的平面區(qū)域的面積;

3)設(shè),且為等腰三角形,當(dāng)為何值時(shí),多面體的體積恰好為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率是,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),當(dāng)直線平行軸時(shí),直線被橢圓截得的線段長(zhǎng)為4.

1)求橢圓的方程;

2)設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,其中為矩形,為梯形,,.

(Ⅰ)求證:平面;

(Ⅱ)若二面角的平面角的余弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線與直線平行,求的值;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】依據(jù)黃河濟(jì)南段8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖()所示:依據(jù)濟(jì)南的地質(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖()所示.

(I)以此頻率作為概率,試估計(jì)黃河濟(jì)南段在8月份發(fā)生I級(jí)災(zāi)害的概率;

(Ⅱ)黃河濟(jì)南段某企業(yè),在3月份,若沒(méi)受1、2級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.

現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:

試問(wèn),如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案