已知直線l的參數(shù)方程為數(shù)學(xué)公式(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,圓C的方程為p=2數(shù)學(xué)公式cos(θ+數(shù)學(xué)公式),則圓心C到直線l的距離為_(kāi)_______.


分析:把參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式求出圓心C到直線l的距離.
解答:由直線l的參數(shù)方程為(t為參數(shù))可得,x+2y+6=0.
由圓C的方程為p=2cos(θ+),可得 ρ2=2ρ(-),即 x2+y2=2x-2y,即 (x-1)2+(y+1)2=2,
表示以(1,-1)為圓心、以為半徑的圓..
故圓心C到直線l的距離為 =
點(diǎn)評(píng):本題主要考查把參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

C選修4-4:坐標(biāo)系與參數(shù)方程已知直線l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),求直線l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)與參數(shù)方程:
已知直線l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=
sinθ
1-sin2θ
以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(0,2),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)線段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題) 已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),圓C的參數(shù)方程為
x=cosθ+2
y=sinθ
(θ為參數(shù)),則圓心C到直線l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線L與圓C有公共點(diǎn),則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案