【題目】已知函數(shù),若方程有四個(gè)不同的解,則的取值范圍為( )

A. B. C. D.

【答案】A

【解析】

因?yàn)楹瘮?shù),都是偶函數(shù),所以方程有四個(gè)不同的解,只需在上,的圖象兩個(gè)不同的交點(diǎn),畫出函數(shù)圖象,求出兩函數(shù)圖象相切時(shí)的,利用數(shù)形結(jié)合可得結(jié)果.

因?yàn)楹瘮?shù)都是偶函數(shù),

所以方程有四個(gè)不同的解,

只需在上,的圖象在兩個(gè)不同的交點(diǎn),

不合題意,

當(dāng)時(shí),當(dāng)

即交點(diǎn)橫坐標(biāo)在上,

假定兩函數(shù)的圖象在點(diǎn)處相切,

即兩函數(shù)的圖象在點(diǎn)處有相同的切線,

則有,則有解得,

則有

可得,則有,解得

因?yàn)?/span>越小開口越大,

所以要使得, 上,恰有兩個(gè)不同的交點(diǎn),

的取值范圍為,

此時(shí),的圖象在四個(gè)不同的交點(diǎn),

方程有四個(gè)不同的解,

所以的取值范圍是,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過右焦點(diǎn)作垂直于橢圓長(zhǎng)軸的直線交橢圓于兩點(diǎn),且為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2) 設(shè)直線與橢圓相交于兩點(diǎn),若.

①求的值;

②求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

當(dāng)時(shí),求的值;

當(dāng)時(shí),是否存在正整數(shù)n,r,使得、,依次構(gòu)成等差數(shù)列?并說明理由;

當(dāng)時(shí),求的值m表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),將的圖象向右平移兩個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個(gè)實(shí)根,求的取值范圍;

(3)若函數(shù)的圖象關(guān)于直線對(duì)稱,設(shè),已知對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)則關(guān)于的方程的實(shí)數(shù)解最多有

A. 4個(gè) B. 7個(gè) C. 10個(gè) D. 12個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)斜率不為0的直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),記直線的斜率分別為.

(1)求證:的值與直線的斜率的大小無關(guān);

(2)設(shè)拋物線的焦點(diǎn)為,若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(。┣骯的取值范圍;
(ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是(
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個(gè)周期
D.函f(x)在(0, )內(nèi)是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案