如圖,在△ABC中,D、E分別是AC、BC的中點(diǎn),M是DE的中點(diǎn),若
AB
=
a
,
BC
=
b

(1)用
a
,
b
表示
AM

(2)若N為線段AB的中點(diǎn),求證:C、M、N三點(diǎn)共線.
考點(diǎn):平面向量的基本定理及其意義,向量的三角形法則
專題:平面向量及應(yīng)用
分析:利用向量的幾何意義,表示出
AM
,利用向量共線的充要條件得到兩向量共線,進(jìn)一步得出三點(diǎn)共線.
解答: 解:(1)∵D、E分別是AC、BC的中點(diǎn),M是DE的中點(diǎn),
AM
=
AC
-
MC
=
AC
-(
DC
-
DM
)=
AC
-(
1
2
AC
-
1
2
DE
)=
1
2
AC
+
1
4
AB
=
1
2
AB
+
BC
)+
1
4
AB
=
3
4
AB
+
1
2
BC
=
3
4
a
+
1
2
b

(2)∵
MN
=
AN
-
AM
=
1
2
AB
-
3
4
a
-
1
2
b
=-
1
4
a
-
1
2
b
,
MC
=
AM
-
AC
=
AM
-(
AB
+
BC
)=
3
4
a
+
1
2
b
-(
a
-
b
)=-
1
4
a
-
1
2
b

MN
=
MC

MN
MC
有交點(diǎn),
∴C、M、N三點(diǎn)共線.
點(diǎn)評(píng):本題考查向量的運(yùn)算法則、向量共線的充要條件、利用向量共線解決三點(diǎn)共線,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位有職工750人,其中青年職工350人,中年職工150人.為了解該動(dòng)物職工的心理狀況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為( 。
A、7B、15C、35D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的橢圓
x2
a2
+
y2
b2
=1(a>b>0),焦距為2
3
,長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)O作兩條互相垂直的射線,與橢圓交于A,B兩點(diǎn).
(1)證明:點(diǎn)O到直線AB的距離為定值,并求出這個(gè)定值;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是函數(shù)y=lnx圖象上的動(dòng)點(diǎn),則點(diǎn)P到直線y=x的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖①,在矩形ABCD中,AB=5,AD=
20
3
,AE⊥BD,垂足是E,點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF
(1)求AE和BE的長(zhǎng);
(2)若將△ABF沿著射線BD方向平移.設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O于A,AD切⊙O于A,∠BAD=60°,則∠ACB=(  )
A、120°B、150°
C、90°D、100°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)若x1、x2∈[1,+∞),試比較ln(x1x2)與x1+x2-2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù),C2
x=6cosθ
y=2sinθ
(θ為參數(shù)).
(Ⅰ)C1、C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)t=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=-3
3
+
3
t
y=-3-t
(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-x1)(x-x2)(x-x3),x1,x2,x3∈R,且x1<x2<x3
(Ⅰ)當(dāng)x1=0,x2=1,x3=2時(shí),若方程f(x)=mx恰存在兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)m的值;
(Ⅱ)求證:方程f′(x)=0有兩個(gè)不相等的實(shí)數(shù)根;
(Ⅲ)若方程f'(x)=0的兩個(gè)實(shí)數(shù)根是α,β(α<β),試比較
x1+x2
2
與α,β的大小并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案