精英家教網 > 高中數學 > 題目詳情

已知△ABC中,AB=4,BC=6,∠ABC=30°,一只螞蟻在該三角形區(qū)域內隨機爬行,則其恰好在離三個頂點距離都大于1的地方的概率為


  1. A.
    數學公式
  2. B.
    1-數學公式
  3. C.
    1-數學公式
  4. D.
    數學公式
B
分析:先求出三角形的面積,再求出據三角形的三頂點距離小于等于1的區(qū)域為三個扇形,三個扇形的和是半圓,求出半圓的面積,利用幾何概型概率公式求出恰在離三個頂點距離都大于1的地方的概率.
解答:解:小螞蟻活動的范圍是在三角形的內部,△ABC中,AB=4,BC=6,∠ABC=30°,所以面積為×4×6×sin30°=6,
而“恰在離三個頂點距離都大于1”正好是三角形去掉一個半徑為1的半圓,面積為6-
所以恰在離三個頂點距離都大于1的地方的概率為=1-
故選B.
點評:本題主要考查幾何概型概率公式、三角形的面積公式、圓的面積公式,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC中,AB=4,∠BAC=45°,AC=3
2
,則△ABC的面積為
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•遼寧)選修4-1:幾何證明講
已知△ABC中,AB=AC,D是△ABC外接圓劣弧
AC
上的點(不與點A,C重合),延長BD至E.
(1)求證:AD的延長線平分∠CDE;
(2)若∠BAC=30°,△ABC中BC邊上的高為2+
3
,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•大連一模)已知△ABC中,AB=2,AC=
3
,∠B=60°,則∠A的度數為
30°
30°

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,AB=1,BC=2,則角C的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

定義平面向量的正弦積為
a
b
=|
a
||
b
|sin2θ
,(其中θ為
a
、
b
的夾角),已知△ABC中,
AB
BC
=
BC
CA
,則此三角形一定是( 。
A、等腰三角形
B、直角三角形
C、銳角三角形
D、鈍角三角形

查看答案和解析>>

同步練習冊答案