【題目】直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點(diǎn),則“k=1”是“△OAB的面積為”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分又不必要條件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C: ,直線l:
(Ⅰ)求直線l所過定點(diǎn)A的坐標(biāo);
(Ⅱ)求直線l被圓C所截得的弦長最短時(shí)m的值及最短弦長;
(Ⅲ)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時(shí),求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)正中學(xué)新校區(qū)內(nèi)有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),校總務(wù)處計(jì)劃對(duì)其開發(fā)利用,其中弓形BCD區(qū)域(陰影部分)用于種植觀賞植物,△OBD區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。
(1)設(shè)(單位:弧度),用表示弓形BCD的面積
(2)如果該校總務(wù)處邀請(qǐng)你規(guī)劃這塊土地。如何設(shè)計(jì)的大小才能使總利潤最大?并求出該最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( 。
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)底數(shù)),方程有四個(gè)實(shí)數(shù)根,則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面.四邊形為正方形,且為的中點(diǎn),為的中點(diǎn).
(1)求證:平面;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)從理工類專業(yè)的班和文史類專業(yè)的班各抽取名同學(xué)參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)得到成績(jī)與專業(yè)的列聯(lián)表:( )
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
班 | 14 | 6 | 20 |
班 | 7 | 13 | 20 |
總計(jì) | 21 | 19 | 40 |
附:參考公式及數(shù)據(jù):
(1)統(tǒng)計(jì)量:,().
(2)獨(dú)立性檢驗(yàn)的臨界值表:
0.050 | 0.010 | |
3.841 | 6.635 |
則下列說法正確的是
A. 有的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)
B. 有的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無關(guān)
C. 有的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)
D. 有的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無關(guān)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com