【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為為參數(shù)),交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)點(diǎn);若、、成等比數(shù)列,求的值

【答案】(1) 曲線的直角坐標(biāo)方程為,直線的普通方程為 ; (2)

【解析】

(1)由極坐標(biāo)與直角坐標(biāo)的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標(biāo)方程和直線的普通方程;

(2)把的參數(shù)方程代入拋物線方程中,利用韋達(dá)定理得,,可得到,根據(jù)因?yàn)?/span>,成等比數(shù)列,列出方程,即可求解.

(1)由題意,曲線的極坐標(biāo)方程可化為,

又由,可得曲線的直角坐標(biāo)方程為,

由直線的參數(shù)方程為為參數(shù)),消去參數(shù),得,

即直線的普通方程為;

(2)把的參數(shù)方程代入拋物線方程中,得,

,設(shè)方程的兩根分別為,

,,可得,

所以,

因?yàn)?/span>,,成等比數(shù)列,所以,即,

,解得解得(舍),

所以實(shí)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,,若平面平面,則三棱錐外接球的表面積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個(gè)公共點(diǎn),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為B,F1到直線AB的距離為|OB|.

(1)求橢圓C的方程;

(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點(diǎn)M、N,試求弦長(zhǎng)|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為0),過點(diǎn)的直線的參數(shù)方程為t為參數(shù)),直線與曲線C相交于A,B兩點(diǎn).

)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】勒洛三角形是具有類似圓的“定寬性”的面積最小的曲線,它由德國(guó)機(jī)械工程專家,機(jī)構(gòu)運(yùn)動(dòng)學(xué)家勒洛首先發(fā)現(xiàn),其作法是:以等邊三角形每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形,現(xiàn)在勒洛三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自正三角形外的概率為( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,平面,底面四邊形為直角梯形,,,,.

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)中點(diǎn),在四邊形所在的平面內(nèi)是否存在一點(diǎn),使得平面,若存在,求三角形的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,若點(diǎn)A為函數(shù)上的任意一點(diǎn),點(diǎn)B為函數(shù)上的任意一點(diǎn).

(1)求AB兩點(diǎn)之間距離的最小值;

(2)若AB為函數(shù)與函數(shù)公切線的兩個(gè)切點(diǎn),求證:這樣的點(diǎn)B有且僅有兩個(gè),且滿足條件的兩個(gè)點(diǎn)B的橫坐標(biāo)互為倒數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年將在日本東京舉辦第屆夏季奧林匹克運(yùn)動(dòng)會(huì),簡(jiǎn)稱為“奧運(yùn)會(huì)”,為了解不同年齡的人對(duì)“奧運(yùn)會(huì)”的關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的 人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì),“年輕人”與“中老年人”的人數(shù)之比為.

關(guān)注

不關(guān)注

合計(jì)

年輕人

中老年人

合計(jì)

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷是否有的把握認(rèn)為是否關(guān)注“奧運(yùn)會(huì)”與年齡段有關(guān);

(2)現(xiàn)采用分層抽樣的方法從中老年人中選取人進(jìn)行問卷調(diào)查.若再?gòu)倪@人中選取人進(jìn)行面對(duì)面詢問,求事件“選取的人中至少有人關(guān)注奧運(yùn)會(huì)”的概率.

附參考公式:,其中臨界值表:

查看答案和解析>>

同步練習(xí)冊(cè)答案