精英家教網 > 高中數學 > 題目詳情

選修4-5:不等式選講
設f(x)=|x-a|,a∈R.
(I)當-1≤x≤3時,f(x)≤3,求a的取值范圍;
(II)若對任意x∈R,f(x-a)+f(x+a)≥1-2a恒成立,求實數a的最小值.

解:(Ⅰ)f(x)=|x-a|≤3,即a-3≤x≤a+3.
依題意,
由此得a的取值范圍是[0,2].…(4分)
(Ⅱ)f(x-a)+f(x+a)=|x-2a|+|x|≥|(x-2a)-x|=2|a|.…(6分)
當且僅當(x-2a)x≤0時取等號.
解不等式2|a|≥1-2a,得a≥
故a的最小值為.…(10分)
分析:(I)當-1≤x≤3時,f(x)=|x-a|≤3,即a-3≤x≤a+3.由此建立關于a的不等關系能求出a的取值范圍.
(II)根據絕對值不等式的性質得|x-2a|+|x|最小值就是2|a|,若f(x-a)+f(x+a)≥1-2a對x∈R恒成立,則只要滿足2|a|≥1-2a,由此能求出實數a的最小值.
點評:本題考查不等式的解集的求法,考查滿足條件的實數的最小值的求法,解題時要認真審題,注意零點分段討論法和絕對值不等式性質的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

選修4-5:不等式選講
設x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講:
設正有理數x是
2
的一個近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個更接近于
2
?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數,且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設函數,f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案