Δ兩個(gè)頂點(diǎn)的坐標(biāo)分別是,邊所在直線的斜率之積等于,求頂點(diǎn)的軌跡方程,并畫出草圖。

解析試題分析:設(shè)
   
考點(diǎn):求動(dòng)點(diǎn)的軌跡方程
點(diǎn)評(píng):求軌跡方程的題目大體分為以下幾步:建系設(shè)點(diǎn),尋找動(dòng)點(diǎn)滿足的關(guān)系,將關(guān)系坐標(biāo)化,整理化簡,除去多余點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的離心率為,過右焦點(diǎn)且斜率為的直線交橢圓兩點(diǎn),為弦的中點(diǎn),為坐標(biāo)原點(diǎn).
(1)求直線的斜率;
(2)求證:對(duì)于橢圓上的任意一點(diǎn),都存在,使得成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線與拋物線交于兩點(diǎn).
(1)求線段的長;(2)若拋物線的焦點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,已知橢圓上的任意一點(diǎn),滿足,過作垂直于橢圓長軸的弦長為3.

(1)求橢圓的方程;
(2)若過的直線交橢圓于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為
(1)求曲線C的普通方程;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線L的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直角坐標(biāo)平面上,為原點(diǎn),為動(dòng)點(diǎn),,. 過點(diǎn)軸于,過軸于點(diǎn). 記點(diǎn)的軌跡為曲線,
點(diǎn),過點(diǎn)作直線交曲線于兩個(gè)不同的點(diǎn)、(點(diǎn)之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點(diǎn),與曲線相切于點(diǎn),記點(diǎn)的橫坐標(biāo)為,其中

(1)當(dāng)時(shí),求的值和點(diǎn)的坐標(biāo);
(2)當(dāng)實(shí)數(shù)取何值時(shí),?并求出此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).

(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求面積;
(Ⅲ)求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2:的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn);
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動(dòng),求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案