已知|
a
|=2,|
b
|=3,<
a
,
b
>=60°,(
a
-
c
)•(
b
-
c
)=0,則|
c
|的最小值是
 
考點(diǎn):向量在幾何中的應(yīng)用,向量的模,平面向量數(shù)量積的運(yùn)算,數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:在平面直角坐標(biāo)系,畫出圖形,通過數(shù)量積為0,判斷C的軌跡,然后求出最小值.
解答: 解:如圖:|
a
|=2,|
b
|=3,<
a
,
b
>=60°,
a
=(1,
3
)

b
=(3,0)

∵(
a
-
c
)•(
b
-
c
)=0,
c
對應(yīng)的坐標(biāo)是以
a
,
b
的終點(diǎn)在一個(gè)圓上,
圓心坐標(biāo)(2,
3
2
),
半徑為:
1
2
(3-1)2+(0-
3
)
2
=
7
2

|
c
|的最小值是:
22+(
3
2
)
2
-
7
2
=
19
-
7
2

故答案為:
19
-
7
2
點(diǎn)評:本題考查向量在幾何中的應(yīng)用,判斷向量的幾何意義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
④在一個(gè)2×2的列聯(lián)表中,由計(jì)算得K2=13.079,則沒有證據(jù)顯示兩個(gè)變量間有關(guān)系.
其中錯(cuò)誤的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=14,A=60°,b:c=8:5,則△ABC的面積S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為
1
7
,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時(shí)而終止.每個(gè)球在每一次被取到的機(jī)會是等可能的.則甲取到白球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是拋物線C1:y2=2pr(p>0)的焦點(diǎn),點(diǎn)A是拋物線C1與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的一個(gè)公共點(diǎn),且AF⊥x軸,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知71=07,72=49,73=343,74=2401,…,則72014的末兩位是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z•(1-i)=1+i(i為虛數(shù)單位),則復(fù)數(shù)z的模是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
4
3
,則
6sinα+cosα
3sinα-2cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2014)2f(x+2014)-4f(-2)<0的解集為(  )
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,-2014)

查看答案和解析>>

同步練習(xí)冊答案