(文科)設(shè)數(shù)列{an}滿足a1+3a2+32a3+…3n-1an,n∈N*

(Ⅰ)求數(shù)列{an}的通項;

(Ⅱ)設(shè)求數(shù)列{bn}的前n項和Sn

答案:
解析:

  (Ⅰ)

  

  

  

  驗證時也滿足上式,

  (Ⅱ)

  

  

  

  ,

  


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c,n∈N*其中a,c為實數(shù),且c≠0
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設(shè)a=
1
2
,c=
1
2
,bn=n(1-an),n∈N*,求數(shù)列{bn}的前n項和Sn
(Ⅲ)若0<an<1對任意n∈N*成立,求實數(shù)c的范圍.(理科做,文科不做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)數(shù)列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2;
(II)求數(shù)列{an}的前n項和Sn;
(III)設(shè)bn=log2Sn,存在數(shù)列{cn}使得cn•bn+3•bn+4=1,試求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科做)數(shù)列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2;
(II)求數(shù)列{an}的前n項和Sn;
(III)設(shè)bn=log2Sn,存在數(shù)列{cn}使得cn•bn+3•bn+4=1,試求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文科做)數(shù)列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2;
(II)求數(shù)列{an}的前n項和Sn;
(III)設(shè)bn=log2Sn,存在數(shù)列{cn}使得cn•bn+3•bn+4=1,試求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c,n∈N*其中a,c為實數(shù),且c≠0
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設(shè)a=
1
2
,c=
1
2
,bn=n(1-an),n∈N*,求數(shù)列{bn}的前n項和Sn
(Ⅲ)若0<an<1對任意n∈N*成立,求實數(shù)c的范圍.(理科做,文科不做)

查看答案和解析>>

同步練習(xí)冊答案